САМАРКАНДСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

На правах рукописи УДК 539.16.08

САФАРОВ АКМАЛ АСКАРОВИЧ

ИССЛЕДОВАНИЕ НИЗКИХ АКТИВНОСТЕЙ ОБЪЕКТОВ ПРИРОДНОЙ СРЕДЫ: НОВЫЙ ПОДХОД В ГАММА-СПЕКТРОМЕТРИИ

01.04.08 -Физика атомного ядра и элементарных частиц. Ускорительная техника

ДИССЕРТАЦИЯ

на соискание ученой степени доктора философии (Doctor of Philosophy) по физикоматематическим наукам

Научный руководитель: профессор, академик Т.М.Муминов

Самарканд - 2021

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	5
I. ГАММА СПЕКТРОМЕТРИЧЕСКИЕ МЕТОДЫ ИЗМЕРЕНИЯ НИЗКИХ	X
АКТИВНОСТЕЙ ОБЪЕКТОВ ОКРУЖАЮЩЕЙ СРЕДЫ1	6
§ 1.1. Сцинтилляционная гамма спектрометрия	
§ 1.2. Полупроводниковая гамма спектрометрия	
§ 1.3. Сравнительные характеристики гамма спектрометрических	
методов	
§ 1.4. Выводы к главе 127	
II. НОВЫЙ ПОДХОД К ИССЛЕДОВАНИЮ НИЗКИХ АКТИВНОСТЕЙ I	В
ОБРАЗЦАХ ОКРУЖАЮЩЕЙ СРЕДЫ2	8
§ 2.1. Образцы проб, оборудование, калибровка и измерение гамма	
спектров	
§ 2.2. Методика разложения гамма спектров на составляющие	
§ 2.3. Компоненты ү-спектров	
§ 2.4. Выводы к главе 241	
III. ПРИМЕНЕНИЕ МЕТОДА РАЗЛОЖЕНИЯ ГАММА СПЕКТРОВ I	B
ИССЛЕДОВАНИЯХ ПРИРОДНЫХ ОБЪЕКТОВ4	2
§ 3.1. Исследование природных объектов Нуратау43	
§ 3.1.1. Характеристики объектов, методики их отбора и	
пробоподготовки	
§ 3.1.2. Измерение и обработка экспериментальных спектров 47	
§ 3.1.3. Результаты исследований и их анализ 55	
§ 3.2. Исследование почвенных процессов в Каратепинских горах и	
адырах60	
§ 3.2.1. Отбор проб и спектрометрический анализ 65	
§ 3.2.2. Экспериментальные результаты и оценка интенсивности	
почвенных процессов на участках местности72	

§ 3.3 Ускоренная оценка радиационной безопасности строительных
материалов78
§ 3.3.1. Современное состояние исследований радиационной
безопасности строительных материалов 79
§ 3.3.2. Использованные приборы, материалы и методы
§ 3.3.3. Нарушение радиоактивного равновесия между радием и
его дочерними продуктами распада
§ 3.3.4. Анализ экспериментальных результатов 100
§ 3.4 Выводы к главе 3 107
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 110
СПИСОК УСЛОВНЫХ ОБОЗНАЧЕНИЙ, СИМВОЛОВ И ТЕРМИНОВ 120

ВВЕДЕНИЕ

Актуальность и востребованность темы диссертации. В настоящее время в мире сцинтилляционные детекторы, в первую очередь на основе кристаллов NaI (Tl), широко применяются в ядерной физике, медицинской диагностике, дозиметрии, радиологии, горнодобывающей промышленности, нефтегазовом секторе, химической отрасли, контроле радиационной безопасности пищевой продукции строительных И материалов, криминалистике, геологии, охране окружающей среды. Несмотря на ряд безусловных преимуществ сцинтилляционных гамма спектрометров существенным их недостатком остается низкое энергетическое разрешение. В последние годы ведущие мировые производители разработали детекторы на основе новых инновационных материалов, как, например, LaBr₃(Ce) и LaCl₃(Ce) с более чем в 2 раза лучшим энергетическим разрешением, однако этого по-прежнему недостаточно для идентификации интерферирующих гамма линий в образцах со сложным радионуклидным составом таких, как объекты природной среды. В связи с этим разработка методов, позволяющих компенсировать низкое энергетическое разрешение сцинтилляционных детекторов, является актуальной задачей.

В мире основная часть исследований, посвященных физическому аспекту анализа объектов окружающей среды, наряду с фундаментальными проблеме научными изысканиями посвящена защиты населения OT радиационного воздействия. В связи с этим, особое внимание уделяется поиску новых подходов обработки сцинтилляционных гамма-спектров, например, методов их разложения на составляющие с использованием математических алгоритмов или спектров эталонных источников, позволяющих, в частности, проводить оценку дозовых нагрузок на население.

В связи с планируемым строительством атомной электростанции в Узбекистане правительство приняло Концепцию развития атомной энергетики, в которой особое внимание уделяется вопросам радиационной безопасности населения. Повышение эффективности проведения гамма-

спектрометрических анализов при мониторинге радиационного состояния окружающей среды имеет важное значение для выполнения поставленной Президентом задачи "обеспечение защиты окружающей среды и защиты людей от радиации при использовании атомной энергии". Направления этих фундаментальных исследований, имеющих важное значение для развития науки нашей страны и её практического применения, отражены в стратегии действий по дальнейшему развитию Республики Узбекистан на 2017-2021 г¹.

Исследования в этой области соответствуют целям и задачам, предусмотренным в Указах Президента № УП-4947 «О стратегии действий по дальнейшему развитию Республики Узбекистан» от 7 февраля 2017 года, УП-5484 «О мерах по развитию атомной энергетики в Республике Узбекистан» от 19 июля 2018 года, Постановлениях Президента Республики Узбекистан № ПП-4165 «Об утверждении концепции развития атомной энергетики в Республике Узбекистан на период 2019 — 2029 годов» от 7 февраля 2019 года, № ПП-4492 «Об утверждении стратегии развития кадрового потенциала для ядерно-энергетической программы Республики Узбекистан» от 16 октября 2019 года, а также в других нормативно-правовых документах, принятых в данном направлении.

Соответствие исследования приоритетным направлениям развития науки и технологий республики. Диссертационное исследование выполнено в соответствии с приоритетным направлением развития науки и технологий в республике IV. «Сельское хозяйство, биотехнологии, проблемы водных ресурсов, экология, охрана окружающей среды».

Степень изученности проблемы. К настоящему времени учеными многих стран мира, в том числе израильскими (К. Kovler, Z. Prilutskiy, S. Antropov, N. Antropova, V. Bozhko, Z.B. Alfassi, N. Lavi), греческими (М. Pilakouta, F.K. Pappa, D.L. Patiris, C. Tsabaris, C.A. Kalfas), пакистанскими (Muhammad Iqbal, Muhammad Tufail, Sikander M. Mirza), китайскими (Jian-

¹ Указ Президента Республики Узбекистан № УП-4947 "О Стратегии действий по дальнейшему развитию РеспубликиУзбекистан" от 07 февраля 2017 г.

Feng He, Yao-Zong Yang, Jin-Hui Qu, Qi-Fan Wu, Hai-Ling Xiao & Cong-Cong Yu), бельгийскими (C. Mertens, C. De Lellis, P. Van Put, F. Tondeur), британскими (J.D. Allyson, D.C.W. Sanderson), американскими (Robin P. Gardner, Xianyun Ai, Cody R. Peeples, Jiaxin Wang, Kyoung Lee, Johanna L. Peeples, Adan Calderon) и другими авторами разработаны различные методы обработки экспериментальных гамма спектров.

Доступные в последние годы методы обработки сцинтилляционных гамма спектров позволяют с высокой точностью определять удельные образцах активности естественных радионуклидов В с известным радионуклидным составом. При этом, за счет более высокой эффективности регистрации гамма квантов сцинтилляционных детекторов, для достижения заданной минимально детектируемой активности необходимое время образца сравнению измерения одного В разы меньше ПО с полупроводниковыми гамма спектрометрами.

Однако, существующие математические подходы ограничены неопределенностью функции конкретного спектрометра. отклика Экспериментальные методы, основанные на измерениях коэффициентов чувствительности радионуклидов в спектральных окнах, ограничены предположением присутствия в образце исключительно радионуклидов ²³²Th, ²³⁸U и их дочерних продуктов распада, а также ⁴⁰К. При наличии в образце других гамма излучающих радионуклидов оценить ошибки измерений невозможно, так как возникают трудности, связанные с установлением вклада интерферирующих пиков и их комптоновского распределения.

Связь диссертационного исследования с планами научноисследовательских работ высшего учебного заведения, где выполнена диссертация. Диссертационное исследование выполнено в рамках научноисследовательских проектов Самаркандского государственного университета по темам: № ОТ-Ф2-025 «Исследование влияния тяжелых металлов и радионуклидов на эко-физиологические процессы биологических систем в техногенно-загрязненных регионах» (2007-2009); № ИТД-7-024 «Гамма –

спектрометрия выпадающих радионуклидов (¹³⁷Cs, ⁷Be) и оценка деградации почв в Центральной Азии» (2009-2011); № А-7-13 «Оценка потенциальной радоноопасности мест массовой застройки в сельской местности Узбекистана» (2015-2017), № А-7-6 «Разработка и внедрение методов контроля радиационной безопасности питьевой воды» (2015-2017); № ПЗ-20170927132 «Методика ускоренной оценки радиационной безопасности строительных материалов» (2018-2020).

Целью исследования является поиск решений компенсации низкого энергетического разрешения сцинтилляционной гамма-спектрометрии в исследованиях объектов со сложным радионуклидным составом.

Задачи исследования:

отработка методических подходов разложения сцинтилляционных гамма спектров объектов со сложным радионуклидным составом на компоненты;

на основе найденных решений:

измерение фоновых содержаний радионуклидов в различных объектах природной среды;

изучение взаимосвязи между удельной активностью выпадающих радионуклидов и процессами эрозии почв;

определение возможности проведения экспресс анализа радиационной безопасности строительных материалов.

Объектом исследования являются пробы почв, растений, воды, полезных ископаемых, строительных материалов с территории Нурата.

Предметом исследования являются удельные активности естественных, техногенных и космогенных радионуклидов в объектах окружающей среды.

Методы исследования. Использованы методы сцинтилляционной и полупроводниковой гамма-спектрометрии, математической статистики, обработка спектрометрических данных, стабилизация параметров

спектрометрического тракта, формирование импульсов и амплитудная дискриминация сигналов.

Научная новизна диссертационного исследования заключается в следующем:

предложен новый подход в исследованиях низко-активных объектов со сложным радионуклидным составом, основанный на разложении сцинтилляционных гамма-спектров на составляющие, позволяющий устранить проблему интерферирующих гамма линий и корректно учесть вклад комптоновского распределения в пики полного поглощения;

впервые определены содержания естественных, космогенного ⁷Ве и техногенного ¹³⁷Сs радионуклидов в объектах природной среды Нуратау;

установлена зависимость интенсивностей средне- и краткосрочных почвенных процессов эрозии от концентраций и пространственного распределения выпадающих радионуклидов ⁷Be и ¹³⁷Cs;

разработан метод экспресс оценки радиационной безопасности строительных материалов на порядок сокращающий время проведения анализа за счет учёта возможного нарушения радиоактивного равновесия между ²²⁶Ra и его дочерними продуктами распада.

Практические результаты исследования заключаются в следующем:

существенно расширены возможности применения сцинтилляционных гамма-спектрометров в исследованиях низко-активных объектов природной среды;

показана возможность количественной оценки степени деградации почв на основе измерений удельной активности выпадающих радионуклидов методом сцинтилляционной гамма-спектрометрии;

установлен диапазон нарушения равновесия между ²²⁶Ra и его дочерними продуктами распада в результате анализа более чем 300 образцов строительной продукции.

Достоверность результатов исследования обусловлена применением аттестованных ВНИИМ им. Менделеева стандартных образцов сравнения,

проведением обработки полученных данных совместно с коллегами из Nuclear Science and Instrumentation laboratory, Seibersdorf, IAEA и Agricultural Research Service Wind Erosion and Water Conservation Research Unit, Big Spring, Texas, United States department of agriculture, сопоставлением полученных результатов с литературными данными и не противоречием их существующим общефизическим понятиям и закономерностям.

Научная и практическая значимость результатов исследования:

Научная значимость результатов исследования заключается в разработке нового универсального подхода к обработке гамма спектров, позволяющего улучшить возможности идентификации интерферирующих фотопиков и снизить статистические погрешности определения удельной активности радионуклидов до уровня ≈1% и менее при измерении низкоактивных проб со сложным радионуклидным составом.

Практическая значимость результатов исследования заключается в расширении применимости сцинтилляционных гамма-спектрометров области проведения радиоэкологического мониторинга, в том числе для оценки дозовых нагрузок на население и при проведении оценки воздействия строительству на окружающую среду планируемых К крупных предприятий, количественной оценки промышленных эрозии почв, радиационной безопасности строительных материалов и пищевой продукции.

Внедрение результатов исследования. На основе полученных результатов по разложению сцинтилляционных гамма спектров на составляющие и исследованию низко-активных объектов природной среды:

предложенный новый подход в исследованиях низко-активных объектов со сложным радионуклидным составом, позволяющий устранить проблему интерферирующих гамма линий и корректно учесть вклад комптоновского распределения в пики полного поглощения использован в Институте ядерной физики АН РУз в рамках выполнения коммерческих контрактов № РЛТ-046-2018, № РЛТ-092-2018, № РЛТ-142-2019, № РЛТ-167-2019 с ЦСЭБ Кибрайского района при измерении удельных активностей ¹³⁷Cs, ²²⁶Ra и ²³²Th

(Письмо Академии наук Республики Узбекистан № 2/1255-2237 от 21.10.2020 г.) и зарубежными учеными (ссылки в международных журналах International Journal of the Physical Sciences Vol. 6(13), pp. 3105–3110, 2011; Revista Mexicana de Ciencias Geológicas, v. 29, núm. 3, 2012, p. 659-675; International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online) Vol. 3, Issue 1, pp: (40-47), 2015; Revista Mexicana de F'ısica 58 (2012) 241–248). Использование научных результатов позволило повысить эффективность проведения анализов на радиационную безопасность пищевой продукции и определения удельной активности естественных радионуклидов.

данные по содержаниям естественных, космогенного ⁷Ве и техногенного ¹³⁷Сs радионуклидов в объектах природной среды Нуратау использованы в Институте ядерной физики АН РУз в рамках выполнения коммерческого контракта № РЛТ-002-2019 с СП "UZLITI ENGINEERING" при определении удельных активностей ²²⁶Ra, ²³²Th, ⁴⁰K, ¹³⁷Cs и ⁷Be (Письмо Академии наук Республики Узбекистан № 2/1255-2237 от 21.10.2020 г.). Использование научных результатов позволило разработать программу радиоэкологического мониторинга на территории строительства первой в Узбекистане атомной электростанции.

данные, полученные в исследованиях зависимости интенсивностей средне- и краткосрочных почвенных процессов эрозии и седиментации от концентраций И пространственного распределения выпадающих радионуклидов ⁷Ве и ¹³⁷Сѕ использованы в Институте ядерной физики АН РУз в рамках выполнения коммерческого контракта № UzGTL-CON-0065 с СП "Uzbekistan GTL" при определении ¹³⁷Cs и ⁷Be (Письмо Академии наук Республики Узбекистан № 2/1255-2237 от 21.10.2020 г.) Использование научных результатов позволило установить глубинные распределения выпадающих радионуклидов в почвах на территории планируемого объектов СП "Uzbekistan GTL", расположенного строительства В Кашкадарьинской области;

разработанный метод экспресс оценки радиационной безопасности строительных материалов использован в Институте ядерной физики АН РУз в рамках выполнения коммерческих контрактов № РЛТ-098-2018, № РЛТ-119-2019 с ЦСЭБ Кибрайского района при определении ²²⁶Ra, ²³²Th и ⁴⁰K (Письмо Академии наук Республики Узбекистан № 2/1255-2237 от 21.10.2020 г.). Использование научных результатов позволило повысить эффективность проведения анализов на радиационную безопасность строительных материалов и сократить издержки производителей при сертификации продукции.

Апробация результатов исследования. Основные результаты диссертационной работы докладывались на 4 международных и республиканских научных конференциях.

Опубликованность результатов. По теме диссертации опубликовано 9 научных работ, 5 научных статей в изданиях, рекомендованных Высшей аттестационной комиссией Республики Узбекистан для публикации основных научных результатов докторских диссертаций, из них 4 в зарубежных научных журналах.

Структура и объем диссертации. Диссертация состоит из введения, трех глав, заключения, списка использованной литературы. Объем диссертации составляет 121 страниц.

Благодарность (Acknowledgements)

First, I would like to thank my supervisor, academician T.M.Muminov, for his guidance through each stage of my work. Second, I want to express my gratitude to Professor U.S.Salikhbaev for constant support and valuable advice. Next, I am extremely grateful to Dr. Iain Darby for hosting me at Nuclear Science and Instrumentation Laboratory (NSIL, IAEA) and extending a great amount of assistance. I also wish to thank Professor Des Walling (University of Exeter), Professor Patrick Raegan (University of Surrey) and Dr. Scott Van Pelt (Wind Erosion and Water conservation, US Department of Agriculture) for their advice and contribution to joint articles.

I must also thank the IAEA/ICTP sandwich training educational programme (STEP) fellowship award.

Special thanks should be given to my colleagues from NSIL's grad room: Ian Kaniu (University of Nairobi), Robert Zedric (Texas A&M University) and Philip Ortega (IAEA intern) for cheering me up.

Список опубликованных работ:

- Muminov I.T., Muhamedov A.K., Osmanov B.S., Safarov A.A., Safarov A.N. Application of NaI(Tl) detector to measurement of natural radionuclides and ¹³⁷Cs in environmental samples – new approach by decomposition of measured spectrum // Journal of environmental radioactivity. – Elsevier, (2005). - V.84(3). - p.321-331. (№3. Scopus; IF=2,161)
- Inoyatov A.Kh., Muminov I.T., Mukhamedov A.K., Rashidova D.Sh., Osmanov B.S., Safarov A.A., Safarov A.N., Khushmurodov Sh.Kh. Radionuclides in the environment of Nuratau // Journal of Radioanalytical and Nuclear Chemistry. – Springer (Netherlands), 2007. - Vol.273, No 2. - pp. 497-506. (№3. Scopus; IF=1,137)
- Muminov T., Nasirov M., R.Scott Van Pelt, Safarov A., Halikulov A., Xushmurodov Sh. Radionuclides in soils along a mountain-Basin transect in the Koratepa Mountains of Uzbekistan // Journal of Soil and Water

Conservation. – Soil and Water Conservation Society (USA), 2010. – N 65(5). – pp. 117A-121A. (№ 1. Web of Science, IF=2,175)

- Safarov A.A., Safarov A.N., Azimov A.N., Darby I.G. Rapid assessment methodology in NORM measurements from building materials of Uzbekistan // Journal of Environmental radioactivity. - Elsevier, 2017. - Vol. 169-170. – pp. 186-191. (№3. Scopus; IF=2,161)
- Мухамедов А.К., Сафаров А.А., Журакулов Ш., Муратов Р.Р., Шаронов И.А., Маматкулов О. О радиационной безопасности отечественных строительных материалов // Научный вестник СамГУ. Самарканд, 2019. №3(115). С. 67-71. (01.00.00. № 2)
- Azimov A.N., Begimkulov Kh., Muminov I.T., Muhamedov A.K., Rashidova D.Sh., Safarov A.A., Safarov A.N., Khushmuradov Sh. Radioactivity of the environment of north-west spurs of Zarafshan mountain range // The Sixth International Conference "Modern Problems of Nuclear Physics": Book of Abstracts, September 19-22, 2006. –Tashkent, – pp.318-319.
- Nasyrov M., Safarov A.A., R.Scott Van Pelt, Xolikulov A.B., Xushmurodov Sh., Muminov T.M. Soil erosion and sedimentation studies at south-western spurs of Zarafshan range using γ-spectrometric technique // International Conference "Nuclear Science and its application": Book of Abstracts, September 25-28, 2012, Samarkand. – Tashkent, 2012. - pp.322-323
- Safarov A.A., Safarov A.N., Azimov A.N., Darby I.G. Low-cost NORM concentrations measuring technique for building materials of Uzbekistan // European Geosciences Union, General Assembly: Geophysical Research Abstracts,17-22 April, 2016. –Vienna (Austria), 2016. - Vol.18. -EGU2016-17932.
- Азимов А.Н., Базарбаев Н.Н.,Бойназаров М.А., Муминов И.Т., Мухамедов А.К., Муратов Р.Р., Насыров М., Сафаров А.А., Худайбердиев А.Т. Радионуклиды в почвах западных отрогов Гиссарского хребта // Физиканинг долзарб муаммолари: Тез. докл. Респ. научн.-практ. конф. 14 октября 2017. - Ташкент, 2017. - С. 208-209.

І. ГАММА СПЕКТРОМЕТРИЧЕСКИЕ МЕТОДЫ ИЗМЕРЕНИЯ НИЗКИХ АКТИВНОСТЕЙ ОБЪЕКТОВ ОКРУЖАЮЩЕЙ СРЕДЫ

§ 1.1. Сцинтилляционная гамма спектрометрия

Сцинтилляторами называют такие вещества, которые под действием заряженных частиц или коротковолнового электромагнитного излучения испускают фотоны в видимой или ультрафиолетовой части спектра. Детектирование ионизирующего излучения путем регистрации сцинтилляций, происходящих в различных материалах, является одним из первых методов, который получил широкое распространение после создания фотоэлектронных умножителей (ФЭУ) [1,2].

Рис.1.1. Схема ФЭУ с присоединенным сцинтиллятором [2]

Сцинтилляторы можно разделить на 3 группы: органические, неорганические и газовые.

Органические сцинтилляторы обычно используются не ЛЛЯ детектирования гамма-излучения, так как имеют пониженную они эффективность к фотоэлектрическому эффекту. Органические сцинтилляторы, тем не менее, широко используются для обнаружения высоко бета-лучей [3]. Важной характеристикой ионизирующих частиш И органических сцинтилляторов является их короткое время высвечивания (<10 нс), что было выявлено в самом начале их обнаружения [4], поэтому они довольно быстрые и могут быть использованы для таких исследований, как времена жизни и возбужденные состояния ядер. Однако следует отметить, что

органические сцинтилляторы имеют гораздо более низкие значения светового выхода чем неорганические.

Механизмы возникновения флуоресценций в органических материалах базируются на переходах между энергетическими уровнями молекул и подробное их описание приведено в книге Биркса [5]. Основные характеристики и сферы применения, выпускаемых на сегодняшней день органических сцинтилляторов даны в Таблице 1.1 [6]. В таблице использованы следующие символы: λ_{max} – положение максимума в спектре люминесценции (нм), τ – время высвечивания (нс), l – длина аттенюации (см), n – показатель преломления, Н/С – отношение атомов водорода к атомам углерода. Для сравнения, неорганический сцинтиллятор NaI(TI) имеет световыход 230% относительно кристалла антрацена.

Таблица 1.1

Свойства некоторых органических сцинтилляторов [6]

Производители		Световыход	λ_{max}	τ	<i>l</i> (см)	n	H/C	ρ	Применение		
NE	Eijen	St.Gobain	% антрацен	(нм)	(нс)				(г/см ³)		
Кристалл											
	Антрацен		100	447	30		1,62	0,715			
	Стильбен		50	410	4,5		1,626	0,858			
Пл	астик										
NE-102A	EJ-212	BC-400	65	423	2,4	250	1,581	1,103	1,032	Общегоприменения	
NE-104	EJ-204	BC-404	68	408	1,8	160	1,58	1,107	1,032	Для быстрого счета	
Pilot-F	EJ-200	BC-408	64	425	2,1	380	1,58	1,104	1,032	Времяпролетные счетчики, большая площадь	
NE-110	EJ-208	BC-412	60	434	3,3	400	1,58	1,104	1,032	Общего применения, большая площадь, длинные	
										полоски	
		BC-420	64	391	1,5	110	1,58	1,100	1,032	Сверхмалые времена	
NE-111A	EJ-232	BC-422	55	370	1,4	8	1,58	1,102	1,032	Очень малые времена, малые размеры	
		BC-422Q	11	370	0,7	<8	1,58	1,102	1,032	Сверхбыстрое время/счет	
NE-103	EJ-260	BC-428	36	480	12,5	150	1,58	1,103	1,032	Фотодиоды и ПЗС; phoswich-детекторы	
NE-108		BC-430	45	580	16,8	-	1,58	1,108	1,032	Полупроводниковые фотодиоды и ФЭУ	
		BC-436	52	425	2,2	-	1,61	0,960D:C	1,130	Тонкие диски	
NE-115	EJ-240	BC-444	41	428	285	180	1,58	1,109	1,032	Phoswich-детекторы для изучения dE/dx	
NE-142	EJ-256	BC-452	32	424	2,1	150	1,58	1,134	1,080	Рентгеновская дозиметрия	
		BC-454	48	425	2,2	120	1,58	1,169	1,026	Нейтронная спектрометрия, тепловые нейтроны	
NE-105	EJ-252	BC-470	46	423	2,4	200	1,58	1,098	1,037	Дозиметрия	
		BC-490	55	425	2,3		1,58	1,107	1,030	Общего применения	
		BC-498	65	423	2,4		1,58	1,103	1,032	Детектирование β, γ	
Жид	кость										
NE-213	EJ-301	BC-501A	78	425	3,2		1,51	1,212	0,874	γ>100 кэВ, быстрая нейтронная спектроскопия	
NE-224	EJ-305	BC-505	80	425	2,5		1,50	1,331	0,877	ү, быстрые нейтроны, большой объем	
	EJ-309		75	425	3,5		1,57	1,25	0,964	Дискриминация по форме импульса	
NE-226	EJ-313	BC-509	20	425	3,1		1,38	0,0035	1,61	ү, быстрые нейтроны	
	EJ-321H	BC-517H	52	425	2,0			1,89	0,86	 γ, быстрые нейтроны, космические и заряж. частицы 	
		BC-517P	28	425	2,2			2,05	0,85	 γ, быстрые нейтроны, космические и заряж. частицы 	
NE-235C	EJ-325	BC-519	60	425	4,0			1,73	0,875	ү, быстрые нейтроны, n- ү дискриминация	
NE-323	EJ-331	BC-521	60	425	4,0			1,31	0,89	Нейтронная спектроскопия, поиск нейтрино	
NE-321A	EJ-339	BC-523A	65	425	3,7			1,67	0,93	Спектроскопия полного поглощения нейтронов	
	EJ-335	BC-525	56	425	3,8			1,57	0,88	Нейтронная спектроскопия, поиск нейтрино	
		BC-533	51	425	3,0			1,96	0,8	 у, быстрые нейтроны, космическое излучение 	
NE-230		BC-537	61	425	2,8		1,50	-	0,954	Быстрые нейтроны, pulse shape discrimination	
NE-314A		BC-551	40	425	2,2			1,31	0,902	γ, рентгеновские лучи<200 keV	
		BC-533	34	425	3,8			1,47	0,951	ү, рентгеновские лучи	

<u>Неорганические сцинтилляторы</u> стали одними из наиболее распространенных материалов для детекторов, применяемых в области ядерной физики [7,8]

В настоящее время производятся огромное количество разных сцинтилляционных детекторов на базе неорганических сцинтилляторов (см. Таблица 1.2), однако для многих рутинных задач, конечные пользователи предпочитают недорогие решения. Например, для спектрометрии с энергиями до 3 МэВ, обычно выбором пользователей являются кристаллы с ФЭУ имеющие размеры 76х76 мм, такие как: NaI(Tl), BGO, LaBr₃:Се и CeBr₃. Среди последних, стандартным недорогим решением все еще остаются детекторы на основеNaI(Tl) [9].

Сцинтилляционные детекторы NaI (Tl) в настоящее время используются для идентификации и измерения низких активностей радионуклидов в различных объектах [10,11]. Они обладаю высокой эффективностью и работают при комнатной температуре. Одним из важнейших параметров при проведении расчетов активности РН в объектах окружающей среды является эффективность регистрации гамма-излучения во всем энергетическом интервале. Обычно она определяется с помощью стандартных калибровочных источников. Гамма широко используется ядерной физике, спектрометрия В медицинской радиографии, нейтронно-активационном анализе, в изучении космических лучей. Однако способность сцинтилляционных детекторов отличать гаммаизлучение различных энергий относительна низкая и их разрешающая способность составляет порядка 7-10 % на линии ¹³⁷Cs. В то же время этот тип детекторов обладает более высокой эффективностью регистрации и меньшей минимально детектируемой активностью [12].

Таблица 1.2

Свойства широко используемых неорганических сцинтилляторов [6]

	р (г/см ³)	λ _{max}	Показатель преломления	т (микросек)	Абсолютный световыход	Относительная амплитуда			
					фотоны/Мэв	импульса			
целочно-галоидные NaI(TI)	3 67	/15	1.85	0.23	38.000	1.00			
	4.51	540	1,85	0,23	58.000 65.000	0.49			
CsI(Na)	4,51	420	1,80	0.46.4.18	39,000	1 10			
LiI(En)	4 08	470	1,04	1 4	11,000	0.23			
Лругие неорганические кристалля	.,		1,50	-,.	111000	0,20			
BGO	7.13	480	2.15	0.30	8200	0.13			
CdWO ₄	7.90	470	2.3	1.1(40%).14.5 (60%)	15.000	0.4			
CaWO ₄	6.1	420	1.94	8	15.000	•,•			
SrI ₂ (Eu)	4,6	435		1,2	85.000				
ZnS(Ag) (поликристаллический)	4,09	450	2,36	0,2		1.3ª			
CaF ₂ (Eu)	3,19	435	1,47	0,9	24.000	0,5			
Неактивированные быстрые неор	ганическ	зие				1			
ВаF2 (быстрая составляющая)	4,89	220		0,0006	1400	-			
ВаF ₂ (медленная составляющая)	4,89	310	1,56	0,63	9500	0,2			
CsI (быстрая составляющая)	4,51	305		0,002 (35%),0,02 (65%)	2000	0,05			
CsI (медленная составляющая)	4,51	450	1,80	До нескольких микросекунд	варьируется	варьируется			
CeF ₃	6,16	310, 340	1,68	0,005,0,027	4400	0.04 to0.05			
Быстрые неорганические активир	ованные	Церием							
GSO	6,71	440	1,85	0,056 (90%), 0,4 (10%)	9000	0,2			
YAP	5,37	370	1,95	0,027	18.000	0,45			
YAG	4,56	550	1,82	0,088 (72%), 0,302(28%)	17.000	0,5			
LSO	7,4	420	1,82	0,047	25.000	0,75			
YSO	4,54	420		0,070	24.000				
LuAP	8,4	365	1,94	0,017	17.000	0,3			
LaCl ₃ (Ce)	3,79	350		0,028	46.000				
LaBr ₃ (Ce)	5,29	380	2,05-2,10	0,026	63.000				
Стеклянный сцинтиллятор	Стеклянный сцинтиллятор								
Литиевое стекло активированное	2,64	400	1,59	0,05 to 0,1	3500	0,09			
церием									
Стекло активированное тербием	3,03	550	1,5	~3000 to 5000	50.000	-			
Для сравнения, характеристики т	Для сравнения, характеристики типичного органического (пластик) сцинтиллятора:								
NE102A	1,03	423	1,58	0,002	10.000	0,25			

§ 1.2. Полупроводниковая гамма спектрометрия

В настоящее время наиболее распространенным полупроводниковым детектором используемым в гамма спектрометрии является детектор на основе сверхчистого германия HPGe [13–15].

НРСе германиевые детекторы имеют лучшее энергетическое разрешение по сравнению с детекторами NaI(Tl) и лучше подходят для измерения различных спектров гамма-излучения. Гамма-спектрометры HPGe предоставляют информацию об изотопном содержании материалов. Детекторы из германия варьируются по размеру от небольших плоских типов до крупных (80-90 см³) коаксиальных детекторов. Полупроводники должны обладать быстрым и эффективным переносом электронов и дырок, способны работать в режиме высокого напряжения (до 5 кВ) между поверхностными электродами, и низким током [16]. Одним из недостатков детектора НРGе является то, что он может функционировать только в качестве спектрометра при охлаждении до температуры жидкого азота, иначе электроны могут быть термически возбуждены в зону проводимости и, таким образом, создают высокий уровень шума [17]. Это означает, что детектор HPGe не является ни компактным, ни прочным. В настоящее время появились системы электрического охлаждения, смягчающие этот недостаток, что незначительно влияет на характеристики детектора. Второй недостаток заключается в том, что для обеспечения эффективности регистрации, эквивалентной обычно доступному размеру сцинтилляционного спектрометра, кристалл германия становится очень дорогим для изготовления. Как следствие, детекторы HPGe значительно дороже, чем детекторы Na(Tl) [18].

§ 1.3. Сравнительные характеристики гамма спектрометрических методов

Активности естественных радионуклидов ²²⁶Ra, ²³²Th и ⁴⁰K определяются методом гамма спектрометрии. Активность ²²⁶Ra и ²³²Th обычно определяется путем измерения активности их дочерних продуктов распада: ²¹⁴Pb и ²¹⁴Bi (для ²²⁶Ra) и ²²⁸Ac, ²¹²Pb, ²¹²Bi и ²⁰⁸Tl (для ²³²Th) [19]. К преимуществам гаммаспектрометрии относятся: высокая чувствительность, неразрушающий режим работы, короткая продолжительность испытания и простота. Наиболее распространенными являются сцинтилляционные детекторы на основе иодида натрия, легированного таллием NaI (Tl) и полупроводниковые детекторы из сверхчистого германия (HPGe). Детекторы NaI (Tl) проще и дешевле, но имеют низкое энергетическое разрешение. По этой причине их часто считают непригодными для идентификации сложных смесей гамма-излучающих материалов и количественного определения их радионуклидного состава.

В таблице 1.3 приведены основные различия между NaI(Tl) и HPGe детекторами, а на Рис.1.2 показан спектр калибровочного источника ²²⁶Ra, измеренного обоими типами детекторов.

Таблица 1.3

Полупроводниковый HPGe	Сцинтилляционный NaI(Tl)
Работает при температуре жидкого азота	Работает при комнатной температуре
(77°K)	Дешевле более чем в 10 раз
Стабильность по температуре	Эффективность регистрации выше более чем
Стабильность по высокому напряжению	в 10 раз
Хорошее энергетическое разрешение	Доступны кристаллы с большим объемом
	Однако
	Чувствителен к температуре
	Чувствителен к дрейфу анодного напряжения
	Плохое энергетическое разрешение

Сравнение характеристик NaI(Tl) и HPGe детекторов [16]

Рис. 1.2. Спектр калибровочного источника ²²⁶Ra, измеренного NaI(Tl) и HPGe детекторами [20]

Можно видеть, что определяемые NaI(Tl) детектором пики в значительной степени шире и соседние пики перекрываются, что создает трудности в идентификации радионуклидов, особенно когда материал комплексный и содержит несколько радионуклидов.

В то же время практика показывает, что детекторы на основе NaI (Tl) могут быть успешно использованы для количественного определения активности смесей, содержащих небольшое количество и известный состав радионуклидов.

Например, авторами работы [20] сделана попытка проверить, могут ли сцинтилляционные NaI(Tl) детекторы, несмотря на их низкое энергетическое разрешение, точно определять содержание EPH в строительных материалах. Они отмечают, что для строительных материалов минерального происхождения можно рассматривать только три радионуклида и их ДПР - ⁴⁰K, ²³²Th и ²³⁸U. В некоторых странах, таких как Финляндия, Украина, Беларусь и Россия, также контролируется активность ¹³⁷Cs [21,22]. В большинстве случаев возможный состав радионуклидов ограничивается этими четырьмя радионуклидами и

сцинтилляционный спектрометр вполне подходит для их определения. Для проведения точного количественного анализа обработка спектров NaI(Tl) детектора должна проводиться с помощью специального программного обеспечения, способного идентифицировать ЭТИ четыре различных радионуклида в смеси и точно определять их активности. В работе активности естественных радионуклидов измеряли с использованием детекторов двух типов: (a) спектрометр NaI(Tl), оснащенный специальным программным обеспечением, основанным на матричном методе наименьших квадратов, и (b) спектрометр из высокочистого германия. В качестве образцов использованы синтетические композиции с активностями, варьирующимися в широком диапазоне, от 1/5 до 5кратной средней активности природных радионуклидов в земной коре, и образцы популярных строительных материалов, таких как бетон, пемза, гипс. Плотность испытуемых образцов изменялась в широких пределах (от 860 до 2410 кг/м³). Результаты, полученные при измерениях на NaI(Tl) детекторе, в пределах погрешностей оказались аналогичны результатам, полученным с помощью HPGe спектрометра (Рис. 1.3 и Таблица 1.4).

Рис. 1.3. Удельная эффективная активность ²²⁶Ra, ²³²Th и ⁴⁰K синтезированных образцов, измеренных NaI(Tl) и HPGe детекторами

Таблица 1.4

Активности ЕРН, измеренных на NaI(Tl) и НРGе детекторах и

Образец	Macca	Детектор	Счет.	Активность (Bq/kg)		
	(кг)		Время(с)	²²⁶ R	²³² Th	⁴⁰ K
Синтетическая	0.944	HPGe	67577	166.4±8.6	202.6±8.6	148.0±8.1
композиция		Nai(Tl)	14400	165.8 ± 8.7	209.1±10.8	153.9±19.4
Синтетическая	0.888	HPGe	70772	7.5±0.4	11.8±0.6	151.7±12.4
композиция		Nai(Tl)	14400	7.6±1.2	12.2±1.4	149.9±13.0
Керамзит	1.269	HPGe	63320	49.3±3.0	44.5±2.2	731.7±36.6
		Nai(Tl)	50000	49.8 ± 1.1	49.6±1.1	735.7±9.6
Керамзит	1.276	HPGe	63320	48.5±2.8	45.4±2.2	801.0±46.4
		Nai(Tl)	7200	49.0±3.2	47.6±3.1	777.3±43.9
Керамзит	1.042	HPGe	63320	53.1±3.2	47.7±2.6	880.9±52.6
		Nai(Tl)	7200	54.6±3.6	53.0±3.6	914.2±51.8
Гипс	1.008	HPGe	254886	9.3±0.5	0.8±0.1	9.3±1.1
		Nai(Tl)	50000	$8.9{\pm}0.8$	<0.8	7.2±6.1
Бетон	2.410 ^a	HPGe	60000	23.3±1.3	4.0±0.2	66.7±4.3
		Nai(Tl)	7200	22.2±1.4	3.8±0.8	64.3±7.6
Бетон	1.750	HPGe	60000	22.0±1.2	4.1±0.2	67.9±4.7
		Nai(Tl)	7200	23.2±1.6	4.1±10	63.1±9.0
Бетон	1.900	HPGe	60000	23.8±1.3	8.9±0.5	62.0±4.4
		Nai(Tl)	7200	22.1±1.5	8.9±1.1	60.6 ± 8.6

неопределенности измерений на уровне 0,95

В качестве второго примера приведем работу [11], где авторы сравнили результаты «in-situ» измерений (в полевых условиях) активности ЕРН в геологических образцах с помощью детектора NaI(Tl) с лабораторными измерениями тех же образцов на НРGе детекторе (Рис. 1.4)

Рис. 1.4. Сравнение удельных активностей а) 238 U, b) 232 Th, c) 40 K в геологических образцах, измеренных на NaI(Tl) и HPGe детекторах

§ 1.4. Выводы к главе 1

Вышеприведенные более примеры показывают, что высокая эффективность и более низкая стоимость NaI(Tl) детектора, при условии разработки и применения методик, предназначенных для компенсации более низкого спектрального разрешения, делают использование NaI(Tl) детекторов предпочтительным, особенно при проведении массовых анализов образцов, возможный радионуклидный состав которых ограничивается ЕРН. В то же время высокая стоимость HPGe детекторов и их обслуживания, необходимость охлаждения детекторов до температуры жидкого азота и привлечения высококвалифицированного персонала, ограничивает использование HPGe детекторов специальными исследовательскими лабораториями (обычно национальные центры и университеты) в связи чем их применение для массового проведения анализов образцов проблематично.

Следует подчеркнуть, что по-прежнему актуальными остаются исследования по разработке методов измерений и обработки сцинтилляционных гамма спектров для случаев неизвестного радионуклидного состава образцов и в исследованиях низких активностей природных объектов, например, таких как вода или растения.

II. НОВЫЙ ПОДХОД К ИССЛЕДОВАНИЮ НИЗКИХ АКТИВНОСТЕЙ В ОБРАЗЦАХ ОКРУЖАЮЩЕЙ СРЕДЫ

Известно, что в окружающей среде содержится свыше двухсот естественных (ЕРН), космогенных (КРН) и техногенных (ТРН) радионуклидов (РН) [23]. При этом, основной вклад в γ -радиоактивность её объектов вносят γ -излучения ЕРН ²²⁶Ra ($T_{1/2}$ =1600 лет), ²²²Rn ($T_{1/2}$ =3,83 сут), ²²⁸Ac ($T_{1/2}$ =6,1 час) и их дочерних РН, ⁴⁰K ($T_{1/2}$ =1,26·10⁹ лет) и ²³⁵U ($T_{1/2}$ =7·10⁸), выпадающих из атмосферы на поверхность Земли КРН ⁷Be ($T_{1/2}$ =54 сут) и ТРН ¹³⁷Cs ($T_{1/2}$ =30 лет). В настоящее время разработаны десятки γ -спектрометрических методик их экспериментального определения [24]. Но в них не решены в комплексе трудности, связанные с:

- подобием спектрального состава фона излучению ЕРН пробы;
- характерными для значительной части объектов окружающей среды низкими концентрациями РН;
- сравнимостью, а во многих случаях и превосходством, интенсивности излучения естественного фона над излучением ЕРН пробы;
- интерференцией большинства пиков полного поглощения (ППП) уизлучений РН.

В связи с этим γ-спектрометрия низких активностей проб окружающей среды требует использования массивных проб, эффективного подавления фона, многочасовых измерений на γ-спектрометрах с высоким энергетическим разрешением и большой эффективностью регистрации γ-излучения, а также корректных методов обработки γ-спектров.

В настоящее время, наиболее полно этим требованиям отвечают γ спектрометры с HPGe-детекторами, достигшие в последнее время достаточно высоких значений эффективности регистрации ε_{γ} и энергетического разрешения ΔE_{γ} . Как уже отмечалось основными недостатками HPGe детектора являются:

- необходимость его охлаждения до температуры жидкого азота;
- для обеспечения эффективности регистрации, эквивалентной обычно доступному размеру сцинтилляционного спектрометра, кристалл германия становится очень дорогим для изготовления;

Указанные недостатки существенно затрудняют применение HPGe детектора в проведении массовых анализов и их использование в полевых условиях.

В настоящей главе представлена, разработанная нами методика обработки сцинтилляционных γ-спектрометров, предназначенная для компенсации более низкого спектрального разрешения детекторов NaI(Tl) и улучшающая возможности измерения низких активностей в объектах окружающей среды.

§ 2.1. Образцы проб, оборудование, калибровка и измерение гамма спектров

Ниже рассмотрены возможности исследования γ -радиоактивности проб объектов окружающей среды с помощью более доступного и более удобного для практического применения сцинтилляционного детектора, многократно уступающего серийному HPGe детектору по энергетическому разрешению, но превосходящему его по эффективности регистрации γ -излучения. При этом длительность отдельных измерений ограничена 6 часами. Трудности, вызванные низким разрешением сцинтилляционного детектора, мы попытались преодолеть разложением измеренного спектра на составляющие, связанные с цепочками распада ²²⁶Ra, ²²²Rn и ²²⁸Ac и распадом ²³⁵U, ⁴⁰K, ¹³⁷Cs и ⁷Be.

<u>у-спектрометр</u>. В исследованиях использовался γ -спектрометр на базе сцинтилляционного детектора с кристаллом NaI(Tl), \emptyset 63×63 мм (ΔE_{γ} /661 кэВ = 6,9 %), помещённым в свинцовую защиту толщиной 10 см. Регистрация и обработка спектров проводилась на PC. Причём, в процессе измерения спектры автоматически записывались в памяти PC через каждый час. Это позволяло в

случаях энергетического сдвига в отдельных спектрах исключать их или проводить корректировку с помощью специально разработанной программы, в основе которой лежит алгоритм сравнения данных и совмещения спектров. Суммарная длительность измерения спектра отдельной пробы составляла 6 часов.

Пробы представляли собой образцы воды, почвы и угля, герметично упакованные в сосуды Маринелли объёмом 1 л.

Вода с высоким содержанием радона отобрана из самоизливающейся скважины в Самаркандской области. Проба v_0 приготовлена непосредственно при отборе с соблюдением мер, обеспечивающих минимальные потери содержащегося в ней радона. В качестве пробы v_1 использовалась проба v_0 выдержанная в течение 45 суток. Третья проба v_2 приготовлялась путём постепенного упаривания непосредственно в сосуде Маринелли двух литров воды до одного литра при температуре 60°С и 45-суточной выдержкой, в течение которой равновесие между ²²⁶Ra и его ДПР восстанавливалось. При этом предполагается, что активность пробы v_2 возрастает в два раза по сравнению с пробой v_1 .

Образцы почвы р отбирались на пробной площадке на вершине холма в предгорьях Заравшанского хребта: верхние слои срезались с площади 1×1 м²на глубины 0~3 и ~3~5 мм; глубинные слои толщиной 1 см срезались с площади 35×35 см² с глубин 0-5, 7, 9, 14 и 19 см.

Пробы угля отобраны в одном из карьеров Ангренского месторождения.

Образцы доведены до воздушно-сухого состояния, измельчены, расфасованы в сосуды и герметизированы. Удельные плотности проб почвы изменялись от 0,85 кг/л (в поверхностных слоях) до 1,2 кг/л (в глубинных слоях), пробы угля – 880 гр/л.

Кроме того, (для вспомогательных целей) на открытой площадке в г.Самарканде экспонировался марлевый планшет – m, на который собирались атмосферные выпадения ⁷Ве.

<u>Измерения у-спектров проб</u> проведены в диапазоне 0-2600 кэВ. Длительность отдельных измерений составляла 6 часов. В пробах воды, почвы и угля должны содержаться EPH. Кроме этого в пробе воды v_0 – эманированный из земной коры газообразный ²²²Rn, а в пробах поверхностных слоёв почвы - КРН ⁷Be и TPH ¹³⁷Cs. В пробе атмосферных выпадений тосновная активность должна быть обусловлена ⁷Be. Для восстановления равновесия между ²²⁶Ra и его дочерними PH пробы герметизировались и выдерживались более 40 суток. Исключение составляли пробы, предназначенные для измерений содержания ²²²Rn и ⁷Be, измерение которых начаты через 0,2-1 сутки.

Эталонные γ -источники. Для разложения экспериментальных спектров на составляющие компоненты и установления их активности использовались объёмные эталонные источники OMACH - ²²⁶Ra, ²³²Th, ⁴⁰K и ¹³⁷Cs, упакованные в идентичные с пробами сосуды с наполнителями плотностью 0,85-0,98 кг/л и активностями A_E = 7350-13790 Бк, прокалиброванными с точностью $\Delta A_E/A_E \le$ 0,06 [25]. Для калибровки детекторов по эффективности регистрации γ -излучения использовались эти же эталонные источники. Спектры E(Ra), E(Th), E(K) и E(Cs) эталонных источников нормированы на время измерения 6 часов и из них вычтен соответствующий вклад фоновых излучений.

§ 2.2. Методика разложения гамма спектров на составляющие

В спектрах ЕРН урано-ториевых рядов насчитывается несколько сотен γ линий [26], наиболее интенсивные из них связаны с распадом PH ряда ²³⁸U – ²²⁶Ra, ²¹⁴Pb, ²¹⁴Bi (спектры, связанные с распадом ²²⁶Ra и ²²²Rn отличаются между собой только одним переходом 186,1 кэВ ²²⁶Ra); PH ряда ²³²Th – ²²⁸Ac, ²¹²Pb, ²⁰⁸Tl; ²³⁵U; ⁴⁰K; TPH ¹³⁷Cs и KPH ⁷Be.

В общем случае спектр Y пробы "у" можно представить в виде суммы составляющих спектров излучения Y(i) () отдельных PH – i и их дочерних PH в пробе и фонового излучения F_Y, обусловленного космическим излучением, радиоактивностью самого детектора и окружающих его объектов (фоновое излучение частично ослаблено в пробе)

$$Y = F_{Y} + Y(Rn) + Y(Ra) + Y(^{235}U) + Y(Th) + Y(K) + Y(Cs) + Y(Be)(2.1)$$

Наиболее короткоживущий компонент этого спектра связан с распадом 222 Rn ($T_{1/2} = 3,83$ сут). Его можно выделить по разности спектров Y_{t1} и Y_{t2} пробы, измеренных в моменты времени t_1 и t_2 после момента $t_0=0$ её приготовления в предположении постоянства комической составляющей фона

$$Y_{t1}(Rn) = (Y_{t1} - Y_{t2}) / [1 - exp(t_2 - t_1)ln2 / T_{1/2}(^{222}Rn)]$$
(2.2)

при этом (t₂- t₁) $\geq T_{1/2}(^{222}Rn)$, а длительностью измерения $\Delta t_M << T_{1/2}(^{222}Rn)$ можно пренебречь. Если эталонный спектр E(Ra) нормировать к спектру Y_{t1}(Rn) по интегральной интенсивности I в области E_γ>200 кэB, то по их разности можно выделить спектр γ-излучения 186,1 кэB ²²⁶Ra

$$E(\gamma \, 186 \, Ra) = E(Ra)I[Y(Rn)]/I[E(Ra)]-Y(Rn)$$
(2.3)

Фоновый компонент $F_{\rm Y}$ спектра Y наиболее просто установить по спектрам проб воды v_1

$$V_1 = F_V + V(Ra) + V(Th) + V(K)$$
(2.4)

и воды, упаренной по объёму в два раза – v₂

$$V_2 = F_V + 2\left[V(Ra) + V(Th) + V(K)\right]$$
(2.5)

как

$$F_{V} = 2V_{1} - V_{2} \tag{2.6}$$

Учитывая, что плотности остальных исследованных проб ($\rho = 0,85-1,2$ кг/л) близки к плотности воды, а их активности заметно выше, в качестве фонового компонента их спектров можно принять спектр $F_Y = F_V$.

Выделение из спектра Y остальных компонентов можно осуществить его разложением на составляющие. Нами это проделано следующим образом:

- из спектра Y вычитаются компоненты F_V и Y(Rn), при этом в разностном спектре

$$Y(\Sigma_0) = Y - F_V - Y(Rn) \tag{2.7}$$

соотношение интенсивностей распределения комптоновского рассеяния и ППП γ -излучения заметно улучшается по сравнению с исходным спектром Y; - в спектре Y(Σ_0) выявляем ППП излучения PH i₁ (как правило, 2615 кэВ ²⁰⁸Tl в ряду ²³²Th), слабо интерферирующего с другими излучениями и по отношению b₁ его интенсивности к соответствующей интенсивности ППП в эталонном спектре E(i₁) определяем спектр содержащегося в пробе PH - i₁:

$$Y(i_1) = b_1 E(i_1)$$
(2.8)

 последовательно повторяя подобные операции вычета спектров, при которых результирующие спектры упрощаются, и нормирования эталонных спектров E(i_j)
 к спектрам соответствующих PH, содержащихся в пробе, по схеме

$$Y(\Sigma_1) = Y(\Sigma_0) - Y(i_1),$$
 (2.9)

$$Y(i_2) = b_2 E(i_2),$$
 (2.10)

$$Y(\Sigma_2) = Y(\Sigma_1) - Y(i_2),$$
 (2.11)

$$Y(i_3) = b_3 E(i_3),$$
 (2.12)

$$Y(\Sigma_3) = Y(\Sigma_2) - Y(i_3),$$
 (2.13)

$$Y(i_4) = b_4 E(i_4), (2.14)$$

устанавливаем спектры остальных трёх PH - i₂, i₃ и i₄ в пробе;

- проводя последнюю операцию вычитания, устанавливаем суммарный спектр

$$Y(\Sigma_t) = Y(\Sigma_3) - Y(i_4)$$
 (2.15)

других PH содержащихся в пробе, в частности ²³⁵U и ⁷Be. Он может быть искажён погрешностями, связанными с нестабильностью усиления спектрометра, ограниченной точностью установления нормировочных коэффициентов b₁-b₄ и неполным соответствием между спектрами пробы, эталонных источников и принятым в качестве фона спектром F_V (из-за различия состава проб и наполнителей эталонных источников). Очевидно, искажения максимальны в низкоэнергетической (E_{γ} <200 кэВ) области спектра. Эталонных источников ²³⁵U и ⁷Be у нас нет, поэтому содержания этих PH могут устанавливаться только по ППП. Оценку методических погрешностей в разложении спектра Y на составляющие можно получить, сопоставляя часть спектра $Y(\Sigma_t)$ в области E_{γ} >200 кэВ (при отсутствии в пробе ⁷Be) и E_{γ} >500 кэВ (при наличии в пробе ⁷Be) - $Y(\delta)$ и спектры компонент Y(i).

<u>Удельные активности</u>²³⁵U и ⁷Be, в связи с указанной причиной (отсутствием соответствующих эталонных источников) устанавливаются только

по интенсивностям ППП – I_{γ} , с учётом эффективности регистрации ε_{γ} и квантового выхода a_{γ} излучений 185,7 кэВ ²³⁵U и 478 кэВ ⁷Be, длительности измерений - Δt_{M} и массы пробы - m:

$$A = I_{\gamma} / \varepsilon_{\gamma} a_{\gamma} \Delta t_{M} m \tag{2.16}$$

Активности 222 Rn, 226 Ra, 232 Th, 40 K и 137 Cs дополнительно устанавливаются и сравнением соответствующих интенсивностей спектров Y(i) и E(i)

$$A(i) = b_i A_E(i) \tag{2.17}$$

в области $E_{\gamma}>200$ кэВ, так как, в мягкоэнергетической области, как это уже отмечено выше, различия в спектрах Y(i) и E(i) возрастают, кроме того, спектр Y(Rn) отличается от спектра E(Ra) отсутствием линии 186,1 кэВ ²²⁶Ra. Данные, полученные по интенсивностям аналитических ППП и спектров Y(i) критически сопоставлялись.

В случаях РН $^{137}\rm{Cs}$ и $^7\rm{Be},$ удельные активности пересчитаны на их запасы в слое

$$q(i) = A(i)\rho\Delta Z \tag{2.18}$$

§ 2.3. Компоненты у-спектров

На примере выбранных проб воды, почвы и угля продемонстрируем возможности предложенного метода обработки экспериментальных γ-спектров.

<u>у-спектры и их компоненты.</u> Экспериментальные спектры проб воды, почвы и угля и процедура их разложения на составляющие приведены соответственно на рисунках 2.1, 2.2 и 2.3 (на рис.2.2 для сравнения со спектром $P(\Sigma_t)$ также приведён спектр M(Be) атмосферных выпадений [27].

Рис. 2.1. Экспериментальные V₀ и V₁, разностные V(Rn) = V₀-V₁, F_V = 2V₁-V₂, V(Σ_0) = V₁-F_V, нормированные V(Th) = b_{VTh}E(Th), V(Ra) = b_{VRa}E(Ra) и V(K) = b_{VK}E(K), и остаточный V(Σ_t) = V(Σ_0)-V(Th)-V(Ra)-V(K) спектры для проб воды.

Рис.2.2. Экспериментальный P, разностный $P(\Sigma_0) = P-F_V$, нормированные P(Ra) = $b_{PRa}E(Ra)$, P(Th) = $b_{PTh}E(Th)$, P(K) = $b_{PK}E(K)$, P(Cs) = $b_{PCs}E(Cs)$ и остаточный $P(\Sigma_t) = P(\Sigma_0)-P(Ra)-P(Th)-P(K)-P(Cs)$ спектры для пробы p(0-0,3 см) почвы; спектр месячных выпадений ⁷Ве

Рис. 2.3. Экспериментальный C, разностный $C(\Sigma_0) = C-F_V$, нормированные C(Th) = $b_{CTh}E(Th)$, $C(Ra) = b_{CRa}E(Ra)$, $C(K) = b_{CK}E(K)$ и остаточный $C(\Sigma_t) = C(\Sigma_0)-C(Th)-C(Ra)-C(K)$ спектры для пробы угля

Наиболее и наименее интенсивными являются спектры проб v_0 и v_1 воды $(I(V_0) = 4,46 \cdot 10^6 \text{ и } I(V_1) = 5,68 \cdot 10^5 \text{имп/6}$ час), соответственно. Фоновый спектр F_V по интенсивности $(I(F_V) = 5,277 \cdot 10^5 \text{имп/6}$ час) превосходит, за исключением V(Rn) и C(Ra), интенсивности всех компонент рассматриваемых спектров воды, почвы и угля – таблица 2.1.

Таблица 2.1

Относительные интенсивности спектров проб и их компонент I[Y(i)]/I[F_V] %

проба	Y	Y(Rn)	Y(Ra)	Y(Th)	Y(K)	Y(²³⁵ U)	Y(Cs)	Y(Be)	Υ(δ)
\mathbf{v}_0	8,45	738	0,054	0,013	0,004	<10-4	-	-	-
v_1	1,08	-	0,054	0,013	0,004	<10-4	I	-	0,003
P(0-0,3	2,07	-	0,250	0,360	0,172	<0,005	0,129	0,135	0,004
см)									
С	4,10	-	1,667	0,989	<0,002	0,401	-	-	0,038

Рассмотрение этих данных позволяет оценить статистические и методические погрешности в установлении интенсивностей компонентов Y(i): - очевидно, что в спектре воды интенсивность компонент V(Rn) установлена с высокой точностью, что касается остальных его компонентов, то для них погрешности велики - $\delta(Ra)$ и $\delta(Th) \le 15$ %, а для V(K) и V(²³⁵U) значения интенсивностей могут рассматриваться как верхние пределы;

- погрешности в установлении интенсивностей компонентов РН в спектрах пробы почвы значительно ниже, чем в случае пробы воды и оцениваются для компонентов P(Ra), P(Th), P(K) и P(Cs) - $\delta < 3\%$; в остаточном спектре P(Σ_t) отчётливо проявляется ППП 478 кэВ ⁷Ве, погрешность в определении его интенсивности δ (Be)~10%. Сравнение спектров P(Σ_t) и M(⁷Be) позволяет оценить и предельную интенсивность ППП 185,7 кэВ ²³⁵U.

- погрешности при разложении спектра угля C на составляющие оцениваются $\delta(\text{Ra}) \sim 3\%$, $\delta(\text{Th}) \sim 5\%$, при этом, остаточный компонент $Y(\Sigma_t)$ достаточно хорошо воспроизводит спектр γ -излучений ²³⁵U, в котором отчётливо выделяется ППП 185,7 кэB, а также проявляется следующий по интенсивности ППП 143 кэB ²³⁵Uи

точность определения его интенсивности - δ(²³⁵U) ~ 10%. Низкое содержание ⁴⁰К в этой пробе позволяет только оценить верхний предел интенсивности его компонента.

Содержания РН в пробах. Результаты определения активностей в исследованных приведены в таблице 2.2. Среднеквадратичные пробах погрешности В ИХ значениях учитывают точность разложения Y экспериментальных спектров на компоненты Y(i), определения интенсивностей аналитических ППП у-излучений и активности эталонных источников. Рассмотрение этих данных позволяет отметить высокое содержание в пробе воды $v_0 - {}^{222}$ Rn, в пробе угля 226 Ra и 228 Ac, а в пробах почв – 40 K. В пробах почв вертикальное распределение ЕРН несколько возрастает на глубинах 10-20 см, в то время как содержания ТРН ¹³⁷Сs и КРН ⁷Ве максимальны в верхних слоях почвы и быстро спадают до ~0 при углублении слоя ниже 6 и 0,6 см, соответственно. Запас ⁷Ве в почве заметно выше его месячных выпадений, очевидно, что это связано как с большей длительностью накопления ⁷Ве в почве, так и стеканием на пробную площадку дождевых и талых вод, содержащих ⁷Ве, с больших площадей. Значения активности ²²⁶Ra и ²³⁵U в пробе угля свидетельствуют о нарушении природного равновесия между ними (вероятно, что равновесие нарушено и между 238 U и 235 U, а также между 238 U и 226 Ra).

Таблица 2.2

Удельные активности EPH ²²⁶Ra, ²³⁵U, ²³²Th(²²²Ac) и ⁴⁰К в пробах, запасы TPH

Проба	$A(\Delta A), \mathbf{K} \kappa / \kappa \Gamma^{2)}$				$q(\Delta q), \mathbf{K} \mathbf{/} \mathbf{M}^2$		
	²²⁶ Ra	²³⁵ U	²²⁸ Ac	⁴⁰ K	¹³⁷ Cs	⁷ Be	
$v_0^{1)}, v_1, v_2$	6,5(14)	<0,02	1,6(3)	<30	-	-	
P(0-0,3)	30(2)	<0,1	47(3)	680(50)	980	220(25)	
P(0,3-0,6)	34(2)	-//-	43(3)	690(50)	1390	130(15)	
P(0,6-1,0)	33(2)	-//-	48(3)	745(55)	1540	<10	
P(1,0-2,0)	34(2)	-//-	48(3)	870(60)	1590	-	
P(2,0-3,0)	33(2)	-//-	57(4)	840(60)	310	-	
P(3,0-4,0)	33(2)	-//-	51(4)	880(60)	215	-	
P(4,0-5,0)	29(2)	-//-	52(4)	860(60)	57	-	
P(5,0-6,0)	33(2)	-//-	56(4)	890(60)	<2	-	
P(7,0-8,0)	31(2)	-//-	54(4)	970(60)	-	-	
P(9,0-10,0)	34(2)	-//-	61(4)	960(60)	-	-	
P(14,0-15,0)	42(3)	-//-	57(4)	920(60)	-	-	
P(19-20)	39(3)	-//-	64(4)	1010(70)	-	-	
с	204(15)	7,1(9)	180(10)	<20	-	-	
m	-	-	-		-	46(4)	

¹³⁷Сѕ и КРН ⁷Ве в пробах почвы

Примечание 1) – в пробе v_0 - $A(^{222}Rn) = 910$ (55) Бк/кг.

2) – запись вида 1,6(3) означает 1,6±0,3.

§ 2.4. Выводы к главе 2

Проблемы измерений низких активностей проб окружающей среды сцинтилляционным спектрометром, связанные с его низким разрешением, можно преодолеть предложенным нами методом измерений и обработки, основанным на разложении экспериментального спектра на составляющие, связанные с цепочками распада ²²⁶Ra, ²²²Rn и ²²⁸Ac и распадом ²³⁵U, ⁴⁰K, ¹³⁷Cs и ⁷Be. Метод позволяет существенно снизить статистические погрешности в установлении содержаний PH, устранить проблему интерферирующих гамма линий и учесть влияние комптоновского вклада в ППП. Так, например, для пробы почвы статистические погрешности оцениваются для компонентов P(Ra), P(Th), P(K) и P(Cs) - $\delta < 3\%$.

III. ПРИМЕНЕНИЕ МЕТОДА РАЗЛОЖЕНИЯ ГАММА СПЕКТРОВ В ИССЛЕДОВАНИЯХ ПРИРОДНЫХ ОБЪЕКТОВ

В настоящей главе на примере конкретных прикладных задач продемонстрированы возможности применения разработанного нами метода измерений и обработки сцинтилляционных гамма спектров объектов природной среды.

В § 3.1 исследована возможность определения фоновых содержаний РН в объектах окружающей среды. Полученные в ходе подобных исследований экспериментальные данные имеют большую практическую значимость. Особенно при проведении оценки воздействия на окружающую среду (OBOC) планируемых к строительству промышленных предприятий различных отраслей экономики. В современной мировой практике финансирование ни одного крупного промышленного предприятия не осуществляется без проведения этой оценки.

В § 3.2 апробировано применение метода в исследованиях почвенных процессов переноса на основе измерений пространственного распределения выпадающих РН. Разработка методов количественной оценки степени эрозии почв, позволяющих получить информацию для больших площадей в короткое время, по-прежнему остается одной из актуальнейших проблем управления земельными ресурсами.

В § 3.3 с использованием разработанного нами метода рассмотрена возможность ускоренной оценки радиационной безопасности строительных материалов. Использование экспресс оценки радиационной безопасности строительных материалов в практике работы аккредитованных лабораторий сократит время проведения измерений до 3 часов вместо нескольких недель и приведет к снижению издержек для предприятий стройиндустрии.

42

§ 3.1. Исследование природных объектов Нуратау

Радионуклидный состав одной фундаментальных является ИЗ характеристик вещества и его установление необходимо для решения широкого круга научных и практических задач, в частности радиоэкологии. Основной вклад у-радиоактивность окружающей среды обусловлен распадом В естественных радионуклидов (ЕРН) урано-ториевых семейств - ²²⁶Ra (T_{1/2}=1600 лет), его ДПР ²¹⁴Pb (27 мин), ²¹⁴Bi(20 мин); ²²⁸Ac(6,1 час) и его ДПР ²¹²Pb (10,6 час), ²¹²Ві (61 мин) и ²⁰⁸ТІ (3 мин); ²³⁵U (7*10⁹ лет), ⁴⁰К (1,3*10⁹ лет), а также выпадающих КРН ⁷Ве (54 сут), и техногенного ТРН ¹³⁷Сs (30 лет) [24,26,28].

ЕРН поступают в окружающую среду в результате природных процессов вымывания и выветривания горных пород, а в последнее столетие в результате резкого роста горнодобывающего производства. Кроме того, в окружающую среду поступают изотопы радона, эманирующие из земной коры, наиболее долгоживущий из которых²²²Rn ($T_{1/2}=3.8$ сут).

КРН 'Ве образуется в верхних слоях атмосферы в реакциях расщепленных ядер кислорода и азота космическими лучами, где его ионы прилипают к пылинкам и аэрозолям. Его образование и выпадение на поверхность Земли зависит от солнечной активности, геофизических и погодных процессов в атмосфере. ТРН ¹³⁷Сѕ является одним из наиболее долгоживущих продуктов ядерного деления и его поступления в окружающую среду обусловлены испытаниями ядерного оружия и нештатными ситуациями на предприятиях атомной промышленности и энергетики. В настоящее время его глобальные выпадения на поверхность Земли сократились на несколько порядков, по сравнению с 60-70 гг XX века – периодом интенсивных испытаний ядерного оружия. Несмотря на то, что за прошедшие годы его запасы на поверхности Земли сократились более, чем на половину и они перераспределились из поверхностных в более глубокие слои почвы и донных отложений, он всё ещё остаётся наиболее значимым РН в радиоактивности окружающей среды.

43

Механизмы миграции PH в почве разнообразны: фильтрация атмосферных осадков, движение воды по поверхности, капиллярный подток влаги к поверхности почвы, термоперенос влаги из-за градиента температуры, диффузия ионов PH, перенос по корневым системам растений, роющая деятельность насекомых и животных, антропогенная деятельность. Скорости их протекания определяются химическими свойствами PH, физико-химическими характеристиками почвы и погодно-климатическими условиями [28]. ЕPH в тех или иных количествах содержатся во всех объектах окружающей среды, КPH ⁷Be и TPH ¹³⁷Cs в заметных концентрациях содержатся только в верхних слоях почвы и донных отложений.

В настоящее время во многих странах проблемам радиоактивности окружающей среды уделяется серьезное внимание. Они актуальны и в Центральной Азии, в которой широко развита горно-добывающая промышленность, в том числе и урановая, и которая относится к широтной зоне (40⁰-60⁰ северной широты) с максимальным средним уровнем глобальных выпадений TPH ¹³⁷Cs-Q=5,17 кБк/м² [28].

Нами γ-спектрометрическим методом исследованы содержания ЕРН, КРН ⁷Ве и ТРН ¹³⁷Сѕ в пробах природных вод, донных отложений, почв, горных пород, растений, продуктов питания и месячных атмосферных выпадений на территории одного из наиболее интересных районов Центральной Азии – Нуратау (Рис.3.1), включающего в себя береговую зону Айдаро-Арнасайской озерной системы (№1-4), безводную Фаришскую степь (№5-8), низко и среднегорья хребта Нуратау и его отрогов с отдельными родниками и ручьями (№10-23) и впадину Караката с соляным озером Лавлякан (№9).

Рис. 3.1. Контрольные точки отбора проб в районе Нуратау

Этот регион на севере и северо-западе граничит с пустыней Кызылкум, на востоке с Голодной степью и на юге с Зарафшанской равниной. Его высшая точка – вершина Хаятбаши (2169 м), низшая – озеро Лавлякан (195 м). Среднегодовое количество атмосферных осадков – от 200 мм на севере, до 500 мм – на юге. С древнейших времен этот регион является трансграничной зоной между кочевой и оседлой культурами [29,30]. Природоохранительная значимость этого региона обусловила создание на его территории Нуратинского государственного заповедника и Арнасайского заказника. Несмотря на это, нарастающая хозяйственная деятельность (пастбищное животноводство, виноградарство, садоводство, рыболовство, добыча полезных ископаемых) и возрастание объема сброса вод в Айдаро-Арнасайскую озерную систему [31] оказывают заметное влияние на экологическую ситуацию региона.

Полученные в этом исследовании данные о фоновых значениях радиоактивности окружающей среды Нуратау и прилегающей территории могут быть использованы для проведения ОВОС планируемых к строительству в этой зоне промышленных предприятий различных отраслей экономики.

§ 3.1.1. Характеристики объектов, методики их отбора и пробоподготовки

Воды Айдаро-Арнасайской озерной системы (№1-4) содержат соли в концентрации 7,6 г/л. В озере Лявлякан (№9), практически полностью пересыхающего в летний период, концентрация соли достигает 280 г/л. Воды в родниках (№10 и 21), в ручьях (№14, 16, 17, 21) и в подземном потоке (№18) – пресные. Воды глубинных скважин (№11 и 22) сероводородные, сильно минерализованы. Слабо минерализована вода и в ручье №11.

Отбор проб в озерах проводился с поверхности и с глубин~2 м, в ручьях со дна (глубина 0,2-1 м), в родниках из истока, в подземном потоке - из промоины. Пробы вод отбирались по методике ВНИИМ им. Менделеева, обеспечивающей минимальные потери (<10%) содержащихся в них ²²²Rn.

Почвы береговой зоны озер (№1-4) относятся к пескам, озера Лявлякан (№3) –к пустынно-песчаным, Фаришской степи (№5-8) –к сероземам светлым целинным, горных районов в основном к различным типам сероземов –темным (№12, 18 и 20), типичным залежным (№17 и 19), типичным богарным (№2), местами сильно щебенистым (терасса-№12, ущелье-№23) и только на хребтах Хаят-(№13) и Ухум-(№14) - к коричневым карбонатным [29]. Отбор проб почв осуществлен на слабо-затронутых антропогенной деятельностью пробных площадках: верхние слои, после срезания травяного покрова, отбирались с площади 1 м² на глубины 0~2 и ~2~4 мм; глубинные слои толщиной 1 см. срезались с площади 35×35 см²с глубин от 0 до 100 см., при этом каждая проба взвешивалась.

<u>Донные отложения</u> в озерах (№1-4) отбирались на глубинах ~2 м, в ручьях (№11 и 17) - со дна, последовательно двумя одно сантиметровыми слоями.

<u>Горные породы</u> отбирались в нескольких местах карьеров (№9-соль, №10мрамор, №12-гранит, №15–доломит палеогена, доломит рудовмещающий, свинцово-цинковая руда, известняк, №18-песчаник и сланцы). <u>Дикорастущие растения</u> (надземная часть) отбирались в осенний период на берегах озер (№1-3 - камыш), в степи (№5-7 - полынь, верблюжья колючка, гармола) и на берегу ручья Ухума (№14 - травосмесь). Ветви ивы отобраны в Олтинсае (№11).

<u>Натуральные продукты питания</u> зерновые, бобовые, корнеплоды, зелень, фрукты и грецкие орехи отобраны в горных районах (№10, 11, 20, 14), мясо – в степи (№5-7) и рыба в озерах (№1-4).

<u>Отбор атмосферных выпадений</u> осуществлен посредством месячных экспонирований марлевого планшета в апреле-августе. Кювета размером $1_{\times}1_{\times}0,1$ м, с устланным на его дне марлевым планшетом, устанавливалась на крыше отдельно стоящего строения (№23). После окончания экспонирования, накопившаяся вода (апрель, май) слита в отдельный сосуд и медленно упарена до сухого остатка, а кювета тщательно протерта марлей, которая вместе с сухим остатком использовалась в качестве пробы.

Пробоподготовка. Все пробы расфасованы в однолитровые сосуды Маринелли, герметизированы, взвешены, промаркированы, и выдержаны в зависимости от задачи от 0,5 до 45 суток (при 45 суточной выдержки активность 222 Rn практически полностью распадается, а равновесие между 226 Ra и его ДПР восстанавливается). Массы воздушно-сухих растительных проб и марли составляли m=140-350 г/л, всех остальных-m=830-1340 г/л. Предварительно отдельные пробы воды упарены по объему в C=2-5 раз при температуре 60⁰C непосредственно в измерительном сосуде. Образцы почв, донных отложений и дикорастущих растений доведены до воздушно-сухого состояния, затем измельчены и просеяны через сито с ячейками 2_×2 мм., образцы горных пород измельчены до размера <5 мм., натуральные продукты измельчены до состояния фарша, пюре или крупы.

§ 3.1.2. Измерение и обработка экспериментальных спектров

47

Основная часть исследований проведена у-спектрометры. на сцинтилляционном γ -спектрометре (NaI(Tl), \varnothing 63×63 мм, $\Delta E_{\gamma}/661$ кэВ≈6,9%, свинцовая зашита толшиной 10 см) с регистрацией и обработкой спектрометрической информации на РС. Измерения проведены в геометрии однолитрового сосуда Маринелли, их длительность составляла 2-6 часов, при этом информация автоматически записывалась в памяти РС каждый час. Это позволяло контролировать постоянство усиления спектрометра и фона.

Отдельные измерения выполнены на γ -спектрометрах с HPGe (относительная эффективность-20%, $\Delta E_{\gamma} \approx 2$ кэВ на $E_{\gamma} = 1332$ кэВ) и Ge(Li) (V=100см³, $\Delta E_{\gamma} = 6$ кэВ на $E_{\gamma} = 1332$ кэВ) - детекторами. Т.к. их эффективность в измерениях в геометрии сосуда Маринелли более чем на порядок меньше по сравнению со сцинтилляционным детектором (Рис. 3.3, 3.4, 3.5), его использование в наших исследованиях было ограничено.

Эталонные у-источники. Для градуировки спектрометров по эффективности регистрации у-излучения – ε_{γ} и обработки измеренных спектров проб использованы образцовые меры активности специального назначения (OMACH) ²³²Th, ²²⁶Ra, ⁴⁰K и ¹³⁷Cs, с активностями A_E =2089-13790 Бк прокалиброванных с точностью $\Delta A/A \sim 6\%$ и упакованных в однолитровые сосуды Маринелли с плотностью инертных накопителей ρ =215-1810 г/л[25]. Спектры этих источников, после вычета из них фонового вклада, приняты в качестве эталонных спектров $D_i(i=^{232}Th(^{228}Ac),^{226}Ra,^{40}K \mu)$.

Обработка сцинтилляционных у-спектров. В у-спектрах всех исследованных проб (Рис. 3.2-3.5) проявились излучения ЕРН связанных с распадом ^{228}Ac , ^{226}Ra , ^{40}K и ^{235}U ; в спектрах проб воды (Рис. 3.2) измеренных непосредственно после отбора – ^{222}Rn ; в спектрах верхних слоев почв (рис. 3.3-3.4) – ТРН ^{137}Cs и КРН ^{7}Be , в спектрах атмосферных выпадений (Рис. 3.5) –

практически только – КРН ⁷*Be*, в спектрах донных отложений – КРН ⁷*Be*. Вклады других РН вследствие их ультранизких содержаний не обнаружены.

Рис.3.2. γ-спектр пробы воды и ее составляющие. a – ППП 186 кэВ ²²⁶Ra, a' – ППП 185.7 кэВ ²³⁵U, b – ППП 241 кэВ ²¹⁴Pb, c – ППП 295 кэВ ²¹⁴Pb, d – ППП 352 кэВ ²¹⁴Pb, e – ППП 609 кэВ ²¹⁴Bi, f – ППП 1120 кэВ ²¹⁴Bi, g – ППП 239 кэВ ²¹²Pb, h – ППП 338 кэВ ²²⁸Ac, k – ППП583 кэВ ²⁰⁸Tl, 1 – ППП911 кэВ ²²⁸Ac, m – 968 кэВ ²²⁸Ac, n – ППП 1461 кэВ ⁴⁰K

Рис.3.3. Разложениеу-спектра верхнего слоя почвы на составляющие

Рис.3.4. Фрагмент γ-спектров фона F, травяного покрова-A, поверхностного (0-5 мм) и подповерхностного (5-10 мм) слоёв почвы, измеренных с помощью HPGe – детектора

Рис.3.5. γ-спектры атмосферных выпадений измеренные сцинтилляционным **A** и Ge(Li) **B** детекторами. A' и B' – соответствующие спектры после вычета фона. а – 241 кэВ ²¹⁴Pb, b – 478 кэВ ⁷Be, c – 511 кэB, d – 1461 кэВ ⁴⁰K

Низкое энергетическое разрешение сцинтилляционного γ -спектра – S, при условии достаточной стабильности коэффициента усиления спектрометра, в значительной степени можно компенсировать его разложением на составляющие излучений фона – F и отдельных PH_i, содержащихся в пробе – S_i : $S = \sum_i S_i + F$. Это особенно критично в спектрах низко активных проб, в которых интенсивности $I(F) > I(S_i)$. Достаточно корректно составляющую F можно установить по спектрам пробы природной воды – $S = \sum_i S_i + F$ и проб воды C– кратко упаренных по объему– $S_c = C \sum_i S_i + F$, измеренных после много-недельной их выдержки, как: $F = (CS - S_c)/(C - 1)$. Выполнение предположения $S_c = C\sum_i S_i + F$ проверено сравнением результатов, полученных с помощью проб с разной степенью упаривания C=2,3,4 и 5.

Установленные этим способом распределения F, принято нами в качестве фоновой составляющей и в спектрах исследованных проб с ρ =830-1340 г/л. Для проб с ρ =150-350 г/л в качестве фона F принят спектр, измеренный с пустым сосудом Маринелли.

Составляющую $\sum_{i} S_{i} = S - F$ можно разложить на S_{i} . В нашем случае он сведен к последовательному описанию реальных составляющих S_{i} эталонными спектрами D_{i} : $S_{i} \approx k_{i}D_{i}$, где $k_{i} = \rho_{i\gamma}/d_{i\gamma}$ -коэффициент нормирования, $\rho_{i\gamma}$ и $d_{i\gamma}$ -интенсивности пиков полного поглощения (ППП) γ -излучения PH_i в спектрах S и D_{i} слабо интерферирующих с другими излучениями. В идеальном случае полного соответствия $k_{i}D_{i}$ и S_{i} , конечное распределение $P_{t} = S - F - k_{Th}D_{Th} - k_{K}D_{K} - k_{Ra}D_{Ra} - k_{Cs}D_{Cs}$ обусловлено излучениями ²³⁵U (E₇=143, 186 кэВ), ⁷Be (E₇=478 кэВ) и других PH, вкладами которых мы пренебрегаем.

<u>Активности ²²⁸Ac, ²²⁶Ra, ⁴⁰K и ¹³⁷Cs в пробах</u> установлены по соответствующим коэффициентам k_i и активности A_{D_i} OMACH: $A_i = k_i A_{D_i}$

Активности ²²²Rn содержащегося в пробах вод определены сравнением интенсивностей I разности спектров $S_0 = S_{Rn} + \sum_i S_i + F$ и $S = \sum_i S_i + F$ (Рис.3.2), измеренных непосредственно после отбора пробы и после ее многонедельной выдержки $S_{Rn} = S_0$ -S и эталонного спектра D_{Ra} в области E_{γ} >ППП 186 кэВ ²²⁶Ra: $A_{Rn} = A_{D_{Rn}} I(S_{Rn}, E_{\gamma} > 200\kappa \Rightarrow B)/I(D_{Ra}, E_{\gamma} > 200\kappa \Rightarrow B)$

.Правомерность этого определения проконтролирована по разности спектров $k_{Ra}D_{Ra}$ - S_{Rn} , которая соответствует спектру излучения 186 кэВ ²²⁶Ra.

<u>Активности ²³⁵U и ⁷Be</u> определяются «традиционным» способом по интенсивностям ППП 186 кэВ ²³⁵U и ППП 478 кэВ ⁷Be в спектре P_{i} .

Погрешности в определении активностей РН в пробе определены по точности установления значения k_i и точности значения A_{p_i} .

<u>Предельные возможности метода</u> можно рассмотреть на примере разложения спектров проб воды S_0 и $S_{C=5}$ на составляющие (Рис.3.2), относительные интенсивности $R(S_i) = I(S_i)/I(S)$ которых составляют $R(F) = 0.6768 \pm 0.0006$, $R(S_{Rn}) = 0.3204 \pm 0.0007$, $R(S_{Ra}) = (11.5 \pm 3.5) \cdot 10^{-4}$, $R(S_{Th}) = (7.8 \pm 3.0) \cdot 10^{-4}$, $R(S_K) = (2.2 \pm 1.7) \cdot 10^{-5}$, $R(P_t) = 9 \cdot 10^{-4}$

В пробах, например, в почве поверхностного слоя (Рис.3.3), с относительно высоким содержанием долгоживущих ЕРН, ТРН ¹³⁷Cs и КРН ⁷Be, относительные интенсивности составляющих равны R(F) = 0,61, $R(S_{Ra}) = 0,0886$, $R(S_{Th}) = 0,118$, $R(S_K) = 0,123$, $R(S_{Cs}) = 0,0437$, $R(\Pi\Pi\Pi\Pi 478 \kappa_3 B^{-7} Be) = 0,114$, $R(S_U) = 0,0231$ и $R(P_t) = 0,017$.

Удельные активности и запасы РН. Полученные экспериментальные данные представлены в виде: - $C_z=A_z/m_z$ удельных активностей ЕРН в пробах, – $Q = (A_r + A_p)/a$ запасов КРН ⁷Ве на поверхности пробной площадки, - $q_z = A_z \rho_z \Delta_z / m_z$ запасов ТРН ¹³⁷Сѕ в отдельных слоях почвы и - $Q = \int_0^{z_{max}} q_z dz$ суммарного запаса ТРН ¹³⁷Сѕ на пробной площадке, где m_z -масса измеряемой пробы, ρ_z -плотность почвы на глубине z в слое толщиной Δ_z (она отличается от m_z), A_r и A_p -активности ⁷Ве в травяном покрове и в поверхностном слое почвы (донных отложений) пробной площадки площадью – а, A_z -активность РН в пробе почвы на глубине Z, Z_{max} -максимальная глубина миграции ¹³⁷Сѕ.

§ 3.1.3. Результаты исследований и их анализ

<u>ЕРН В ПРОБАХ.</u> Для компактности представления полученных экспериментальных данных, исследованные пробы объединены в группы, для которых приведены пределы изменения значений удельных активностей ЕРН - $C_z = A_z/m_z$, где *m_z*-масса пробы.

Рассмотрение данных о содержаниях <u>ЕРН в водах</u> (Табл. 3.1) позволяет заключить:

- основная активность вод обусловлена ²²²Rn, причем она подвержена заметным сезонным колебаниям (максимальна в конце весны – начале лета) отражающих изменения геофизических и геохимических процессов в земной коре;
- активность ²²²Rn минимальна в поверхностных водах (озера, ручьи) и заметно выше в подземных и глубинных;
- содержания других ЕРН, за исключением ²²⁶Ra и ²²⁸Ac в водах скважин ниже пределов их обнаружения.

Таблица 3.1

Пробы	Озера, ручьи	Родники	Приповерхностный	Глубинны	е скважины
N⁰			поток		
	1-4,9,11,14,16,17,21	10,21	18	22	11
²²² Rn	4-6	19-27	36-41	33-49	60-91
²²⁶ Ra	<0.3	< 0.3	<0.3	0.4-0.9	1.1-1.4
²²⁸ Ac	<0.3	< 0.3	<0.3	0.3-0.5	0.3-0.6
⁴⁰ K	<10	<10	<10	<10	<10

ЕРН в пробах вод (С_{тіп}-С_{тах}, Бк/л)

<u>Содержание ЕРН в почвах</u> (Таблица 3.2) в зависимости от территории и их типа изменяются в пределах фактора 3 – для ²²⁸Ac и ⁴⁰K, и фактора 5 – для ²²⁶Ra. Неоднородности в их распределении, исследованные до глубин 40 см, проявляются только в верхних слоях толщиной ≤10 см и достигают 17%.

Удельные активности ²³⁵U в исследованных почвах не превышают C(²³⁵U) ≤6 Бк/кг.

<u>В пробах донных отложений</u> содержания ЕРН сравнимы с соответствующими береговыми почвами. Это обусловлено тем, что в озерах (№1-4) пробы отобраны с глубин ~2 м, в то время как уровень воды только за последние 10 лет поднялся на 8,7 м [31], а в ручьях текут прозрачные родниковые воды.

<u>В воздушно-сухих пробах растений</u> (Таблица 3.2) содержания ЕРН различаются между собой, и они несколько ниже, чем в соответствующий почвах прорастания, что связано с соответствующими коэффициентами аккумуляции РН растениями.

<u>Горные породы</u> (Таблица3.2) сильно различаются радионуклидным составом. В пробах соли (№9і) содержания ЕРН ниже пределов обнаружения. Содержания ²²⁶Ra максимальны в пробах (№15n) доломита рудовмещающего и (№15о) свинцово-цинковой руды, ²²⁸Ac – в свинцово-цинковой руде, ⁴⁰K – в пробах гранита.

Таблица 3.2

№ проба	C _{min} -C _{max} , Бк/л			C(²²⁸ Ac)/C(²²⁶ Ra)	C(⁴⁰ K)/C(²²⁶ Ra)
	²²⁶ Ra	²²⁸ Ac	⁴⁰ K		
k (земная кора - кларки)	31	52	775	1,68	9,5
1-4,9, 5-8 a)	16-29	23-41	430-610	1-1,7	18-31
11,12 b)	30-45	33-46	620-690	0,9-1,3	17-27
13,14,17 c)	31-45	51-68	700-870	1,3-1,9	18-28
12,23 d)	?	?	210-270		
1-3;5-9 e)	15-26	9-27	240-320	0,6-1,3	10-15
5-8,9 f)	27-40	31-44	280-460	0,9-1,1	10-16
14 g)	25-31	36-40	620-750	1,2-1,5	22-27
10,11 h)	9-15	18-22	340-376	1,4-1,9	23-39
9 i)	≤4	≤3	<10		
10 k)	9-17	<3	<20	<0.3	<1

Удельные активности ЕРН в пробах почв, растений и горных пород

12 l)	16-30	50-83	900-1250	2,3-3,5	10-16				
Продолжение таблицы									
15 m)	6-14	<2-4	140-170	≤0.3	12-18				
15 n)	590-650	7-13	<20	< 0.02	< 0.03				
15 o)	310-400	220-270	<20	0.6-0.7	< 0.06				
15 p)	10-15	<5	<10-90	< 0.5	<1-6				
18 q)	11-21	38-43	400-430	2,2-3,4	21-36				

Примечание: почвы а) песчаные и сероземные целинные, b) сероземные и типично залежные, c) коричневые карбонатные, d) щебенистые; растения дикорастущие e) камыш и полынь, f) гармола и верблюжья колючка, g) травосмесь, h) дерево – ива; горные породы i) соль, k) мрамор, l) гранит, m) доломит палеогена, n) доломит рудовмещающий, о) свинцово-цинковая руда, p) известняк, q) песчаник и сланцы.

Удельные активности ЕРН и их отношения в пробах почв, донных отложений и воздушно-сухих растений сравнимы в пределах фактора ~2 с соответствующими величинами для ²³⁸U, ²³²Th и ⁴⁰К в кларковых содержаниях U, Th и K в земной коре [32], а в пробах горных пород – эти отношения сильно нарушены. Очевидно, что наблюдаемые факты обусловлены геологическими особенностями строения исследуемых объектов, гео- и биохимическими процессами происходящих в них и химическими свойствами отдельных PH.

<u>В натуральных продуктах питания растительного происхождения</u> радиоактивность в основном обусловлена ⁴⁰К, его содержания максимально в бобовых культурах и грецких орехах (Таблица 3.3). Содержания ²²⁶Ra и ²²⁸Ac в них близки к порогам обнаружения. В исследованных пробах мяса и рыбы низки и содержания ⁴⁰К.

Пробы	С, Бк/кг	Пробы	С, Бк/кг
Горох, фасоль, Маш	400-580	Чеснок, лук репчатый	230-290
Орехи грецкие	240-300	Укроп, кинза	230-260
Косточки абрикосовые	210-240	Щавель, петрушка	160-190
Изюм	140-200	Картофель, морковь	150-190
Пшеница-зерно	120-140	Ревень	100-120
Перец красный высушенный	140-170	Томаты, лук зеленый	60-90
Абрикос натуральный	140-150	Мясо-баранина, говядина	<20
Яблоки, сливы, натуральные	60-100	Рыба-сазан, жерех,	<20
		толстолобик	
Виноград натуральный	30-50		

Удельные активности ⁴⁰К в натуральных продуктах питания.

<u>КРН ⁷Ве и ТРН ¹³⁷Сѕ в почвах и донных отложениях</u>

Таблица 3.4

Запасы КРН ⁷Ве на поверхности почв и донных отложений

N, площадки, почв	лощадки, почв Q, Бк/м ²		N,площадки, донных	ц Q, Бк/м ²	
	Весна	Лето	отложений	Весна	Лето
2-4, 6-8 берега озер, степь	40-60	10-25	2-4 озера	110-160	0-10
11, 12, 14, 17-19, 23 холмы, гребни и склоны гор	130-180	40-70	11-17 ручьи	170-240	0
12, 14, 23 террасы, ущелье	220-380	90-150	23, атмосферные выпадения	30	1-3

Таблица 3.5

Запасы и характеристики вертикальной миграции ТРН ¹³⁷Сs в почвах

N, характеристики площадок,	Q,	ZM	Z _{1/2}	1/β	Zmax	D 10 ⁻⁵
ПОЧВ	Бк/м ²	СМ	См	См	См	
1-4,9 Берег, пески	0.9-1.3	3.1-4.3	1,1-5,4	-	>20	1,574
5-8 степи, сероземы	1.2-1.9	0-1	1,3-1,6	2.3-2.7	≤5	0,345
12а сев. склон серозёмы	2.8	~0	2,4	4.1	10	
12b терраса-осыпь, сильно щебенистая	>29	-	>40	-	>100	
13 гребень, коричневые карбонатные	2.0	~0	2.1	2.7	85	
14а гребень, коричневые карбонатные	1.6	~0	2.4	4.1	9	1,12

14bЮжн.склон, коричневые-	1.6	~0	1.7	2.9	6	0,496
карбонатные						
14с северный склон, коричневые	2.6	~0	3.2	3.3	9	1,05
14d терраса, коричневые	3.8	2?	3.8	6.5	20	2,802
14е терраса-подошва	5.1	7.5	9	-	30	
17 холм, сероземы	2.5	~0	1.2	1.3	4	0,209
18 горная равнина, сероземы	3.2	0	2.3	3.1	7	
19 горная равнина, сероземы	3.7	0	2.9	3.8	10	
20а вершина холма, сероземы	2.1	0	1.2	1.3	4	
20b холм-низина, сероземы	2.4	0	2.1	3.4	10	
23а гребень, сероземы	4.0	0	1.1	2.1	5	
23b южный склон, сероземы	2.8	0	1.2	2.3	7	
23с северный склон, сероземы	3.9	0	3.2	5.5	10	
23d терраса, сильно-щебенистая	11.4	4.1	8.3	-	30	
23ущелье, сильно-щебенистое	>15	>30			>50	

Продолжение таблицы 3.5

Рассмотрение экспериментальных данных о запасах ⁷Ве - $Q = (A_r + A_p)/a$ и ¹³⁷Сs в окружающей среде (Таблицы 3.4 и 3.5) свидетельствуют:

- запасы ⁷Ве и ¹³⁷Сѕ в аридных равнинных (северных) зонах заметно ниже и более равномерно распределены по отдельным площадкам по сравнению с более влажными горными (южными) районами региона;
- запасы и выпадения ⁷Ве весной значительно выше, чем летом;
- в донных отложениях содержание ⁷Ве по сравнению с соответствующими береговыми почвами весной значительно выше, а летом заметно ниже;
- ⁷Ве обнаруживается в атмосферных выпадениях и в тонких (<6 мм) поверхностных слоях почв и донных отложений, а ¹³⁷Сs в значительно более толстых верхних слоях;
- запасы ¹³⁷Сѕ в почвах площадок на которых не происходит скопления дождевых и талых вод сравнимы или ниже значения <u>Q</u>/2(<u>Q</u>=5,17 кБк/м² средней плотности выпадений ¹³⁷Сѕ в зоне 40°-60° св. широты [3].
 Отмеченные факты можно понять учитывая, следующие обстоятельства:
- значительная часть запасов ⁷Ве и ¹³⁷Сѕ выпадает на поверхность Земли вместе с атмосферными осадками, поэтому проявляется их корреляция с

количеством осадков выпавших на территорию и с количеством скопления их вод на рассматриваемой пробной площадке;

- ⁷Ве является короткоживущим PH, поэтому он не успевает мигрировать с поверхности в глубинные слои почвы и проявляется сильная корреляция его запасов с количеством осадков – весной они максимальны, летом минимальны (весной в водоемы стекают осадочные воды с больших территорий, летом они практически полностью прекращаются, с другой стороны миграция PH в водной среде значительно выше чем на почве);
- ¹³⁷Сѕ является долгоживущим РН, основная часть его запасов выпала на поверхность земли более 30 лет тому назад, в настоящее время его выпадения весьма незначительны, а его запасы на половину распались и в результате длительных процессов миграции, он в основном сконцентрировался в верхних слоях почвы и донных отложениях глубинных частей водоёмов.

Проведенные исследования позволили продемонстрировать возможности и целесообразность использования методов сцинтилляционной γ-спектроскопии в исследованиях радиоактивности природной среды.

§ 3.2. Исследование почвенных процессов в Каратепинских горах и адырах

Выветривание горных пород и движение вниз по склону седиментов (отложений) является основой для почвообразования. В результате тысячелетних процессов выветривания и перераспределения почв формируются сложные ландшафты, а также происходит их преобразование под действием динамических сил геологии, климата и растительности. Люди могут также влиять на формирование почв и ландшафтов посредством различной деятельности, такой как сельское хозяйство и выпас скота, которые нарушают стабилизирующее влияние местной растительности. По мере роста мирового населения все больше и больше поверхности Земли подвергается воздействию, и ожидается, что эрозия почвенных ресурсов и заиливание водных путей увеличатся.

Оценка скоростей перераспределения почвы является сложной задачей. Пространственные и временные вариации факторов, влияющих на эрозию, делают ее количественную оценку весьма затруднительной, если не невозможной [33,34]. Количество осадков варьируются от нескольких минут до декад, а скорость ветра может измениться в течении нескольких секунд или месяцев. Осадки и другие климатические факторы стабилизирует влияние растительности на почву, поскольку длительная засуха может привести к обнаженным незащищенным ландшафтам.

В недавней обзорной статье в Science [35] отмечается, что почва является важнейшим ресурсом для выживания человечества в 21 веке и что проблемы водной и ветровой эрозии почвы по-прежнему представляют главную угрозу.

В последних публикациях ООН подчеркивается, что на сегодняшний день состояние большинства почв в различных регионах мира оценивается как удовлетворительное, бедное или очень плохое [36].

Водная эрозия сильно усугубляется вовлечением в оборот новых сельскохозяйственных угодий, которые в настоящее время составляют почти 40% земной площади [37]. В этой связи увеличение масштабов эрозии почв стало широко распространённым явлением и представляет серьезный вызов достижению Целей Устойчивого Развития ООН [38].

Ежегодно 75 млн. тонн плодородной почвы теряется в результате эрозии [38].

Сегодня необходимо не только создание карт фактической степени эрозии почвы, но и проверка эффективности методов управления и сохранения земельных ресурсов, а также срочно требуются прогнозы влияния изменения климата [39].

61

Засушливые регионы Центральной Азии (Казахстан, Киргизия, Таджикистан, Туркмения и Узбекистан) уникальны в своём разнообразии экологических условий. С более чем 70 млн. населением, этот регион сильно зависит от производительности пастбищ и пахотных земель. Во всех странах Центральной Азии – аграрный сектор один из главных секторов экономики. Интенсивные сельскохозяйственные технологии приводят к интенсивной деградации почвы. В связи с этим, проблема внедрения эффективных методов оценки эрозии и седиментации почвы на пастбищах и пашнях Центральной Азии представляется весьма актуальной задачей.

Традиционные методы количественной оценки эрозии почв трудоемки и длительны во времени [40].

Существуют следующие классические методы для оценки эрозии почвы:

- многолетний полевой мониторинг эрозии почвы;
- моделирование полевых осадков на экспериментальных площадках;
- математические модели эрозии почвы.

Большинство классических методов имеют один главный недостаток: они не дают информацию о пространственном перераспределении почвы в пределах изучаемой площадки. Математические модели имеют те же самые ограничения. Они не способны создать картину эрозии в тех местах, где другие сопутствующие данные по эрозии не доступны и где многолетние эксперименты не были (или не могли быть) проведены.

Наиболее распространенные математические модели основаны на Универсальном уравнении потери почвы (Universal Soil Loss Equation) [41]. Разновидностью этой модели является широко применяемая в США модель WEPP. Она разработана в рамках совместного проекта «The Water Erosion Prediction Project» (U.S.Department of Agriculture и Agricultural Research Service). WEPP моделирует многие из физических процессов, влияющих на эрозию почвы: включая инфильтрацию, сток, размер дождевых капель, перенос наносов, отложения, рост растений и разложение остатков [42].

Авторы работы [44] отмечают ключевые области, в которых необходимы исследования для развития модели USLE:

- Преодоление принципиально различного характера смоделированной и измеренной скорости эрозии и сочетания риска эрозии с характеристиками стока и режимом осаждения;
- Расширение программ измерений и мониторинга с целью получения базы данных для валидации модели.

В этой связи математические модели весьма чувствительны к входным, имеющим пространственные и временные вариации параметрам, которые необходимо получать экспериментально в полевых условиях.

Таким образом, имеющиеся ограничения традиционных методов и математических моделей в оценке эрозии почв обуславливают необходимость разработки методов количественной оценки эрозии почв (тонн/гектар в год), позволяющих получить информацию о больших площадях в короткое время.

В последние несколько десятилетий предпринимаются попытки использовать РН, как природные, так и антропогенные, для оценки темпов перераспределения почв во временных масштабах от нескольких недель до столетия. Методика основана на выпадении РН с атмосферными осадками на способности адсорбировать PH поверхность, почв И измерении пространственного перераспределения активности РН через некоторое время. Предполагается, что потеря или увеличение радиоизотопной активности на ландшафте примерно пропорциональна эрозии или отложениям почвы.

Радиоактивность почвы обусловлена содержанием в ней ЕРН и их ДПР. Эта активность со временем уменьшается, так как многие из РН, таких как ⁴⁰К, являясь биологически активными, поглощаются растениями и далее переходят к травоядным животным [43]. ЕРН полезны для определения относительного

возраста почвы, однако они не могут использоваться для оценки темпов перераспределения почвы. В этой связи наиболее перспективными представляются выпадающие PH, такие как КPH ⁷Be, EPH ²¹⁰Pb и TPH (¹³⁷Cs).

КРН ⁷Ве (T_{1/2}=54 сут.) образуется в верхних слоях атмосферы в реакциях расщепленных ядер кислорода и азота космическими лучами, где его ионы прилипают к пылинкам и аэрозолям, а затем вместе с осадками выпадают на поверхность Земли.

EPH ²¹⁰Pb (T_{1/2}=22,3 года) является ДПР ²³⁸U. В атмосфере он образуется в результате распада присутствующего там ²²²Rn и осаждается на поверхность почвы.

ТРН ¹³⁷Cs (T_{1/2}=30,17 лет) в основном образовался в результате атмосферных испытаний ядерного оружия в 1950-х и 1960-х годах прошлого столетия, которые достигли максимума в 1963-1964 гг. Его поступления в окружающую среду обусловлены испытаниями ядерного оружия и нештатными ситуациями на предприятиях атомной промышленности и энергетики.

⁷Ве и ²¹⁰Рb используются для оценки эрозии почвы во временных интервалах от нескольких недель для ⁷Ве и приблизительно 100 лет для ²¹⁰Pb.

¹³⁷Cs является наиболее часто используемым антропогенным радионуклидом, а его временным масштабом являются интервалы, начиная с 1964 года [44]. В настоящее время разработаны модели для оценки скоростей перераспределения почв на основе содержаний этих трех радионуклидов и их распределения в профиле почвы [45].

Очевидно, что точность определения удельной активности ¹³⁷Cs в почве критична для количественной оценки эрозии.

Демонстрация возможностей разработанного нами метода проведена на примере исследований пространственного распределения ¹³⁷Cs на территории экспериментальной площадки и изучения возможной связи этого распределения с процессами переноса почв.

§ 3.2.1. Отбор проб и спектрометрический анализ

Пробы почв отобраны в 32 контрольных точках (КТ) вдоль линейной трансекты, начинающейся у основания голой скалы в горах Каратепа и идущей в северном направлении 5 км до дна дренажного бассейна. Трансекта пролегала по линии меридиана 66°31'31" от широты 39°29'51" до 39°32'37" и включала в себя различные по крутизне типы склонов, пересекала несколько мест с различной растительностью и территории земледелия (Рис. 3.6).

Рис. 3.6. КТ отбора проб вдоль линейной трансекты (горы Каратепа)

Профили почв также отбирались на соседнем холме ив овраге. Наша задача состояла в том, чтобы исследовать декадные (несколько десятков лет) истории перераспределения почв вдоль трансекты на основе пространственных распределений ¹³⁷Cs. Для получения дополнительной информации нами были также исследованы содержания в образцах почвы ²²⁶Ra, ²³²Th, ⁴⁰K и ⁷Be.

Горы Коратепы имеют вулканическое происхождение и являются северозападным окончанием большого Зарафшанского хребта. Климат этого района является полузасушливым со средним годовым количеством осадков 300 мм, относительная влажность колеблется от 10-20% летом до 30% весной и 70-90% зимой. Хотя средняя годовая температура является умеренной 16°С, континентальное местоположение и интенсивное солнечное излучение приводят к большим годовым колебаниям температуры с минимумов -30°С в январе до максимумов 45°С в июле.

Почвы подножия И конуса выноса являются аллювиальными. пойменные Аллювиальными называются почвы, характеризующиеся ИХ периодическим затоплением паводковыми водами и сопровождающиеся отложением на поверхности почвы нового минерального материала. Конус выноса - форма рельефа, расположенная в устьях горных рек при выходе их на террасы широких Почвы предгорной равнины ИЛИ долин. равнины классифицируются как серозёмы. Растительный покров деградирован в разной степени в зависимости от землепользования и обнаженная почва подвержена водной и ветровой эродирует.

Геоморфологические местоположения участков отбора проб, их высоты, расстояния вдоль линии (трансекты), гидрология поверхности и их относительное нарушение представлены в Таблице3.6.

67

Таблица 3.6

Группы геоморфологических местоположений и номера мест отбора проб, высоты, расстояния от вершины линии, характеристики гидрологии поверхности, накопление и инфильтрация поверхностных вод и нарушение

Геоморфологическое описание	Номер места	Высота(м> над	Расстояние вниз по	Гидрология поверхностных вод		Нарушение растительного покрова
		уровнем моря)	линии трансекты	Дренаж	Инфильтрация	
Горный хребет						
Скалы	0	1110	0	Серьезный	_	-
Крутое подножие	1 to6	1063to 936	37 to 322	Сильный	Умеренный	Оченьслабый
Конус выноса Вершина	7 to10	926 to913	480 to613	Умеренный	Умеренный	Сильный
Ненарушенный склон	11,13,16	892 to 839	700 to 852	Сильный	Слабый	Слабый
Наклонная тропа	12,14,15	886 to891	702 to 850	Сильный	Умеренный	Серьезный
Подножие	17,18	832 to 825	868 to914	Сильный	Умеренный	Сильный
Предгорная равнина (адыр)	19 to 23	820 to770	974 to1816	Слабый	Слабый	Умеренный
Обочина	24,25	764 to 759	1961 to2120	Слабый	Умеренный	Сильный
Северная часть	26 to 28	749to740	2278 to2743	Слабый	Слабый	Умеренный
Плайа (низина)	29,30	724 to 723	3971 to4137	-	Сильный	Умеренный
Овчарня	31,32	725 to 726	4784 to5160	Слабый	Умеренный	Сильный
Овраг	R	828	818	_	Серьезная	-
Бугор	К	830	818	Сильный	Умеренный	Сильный

растительности для исследуемого участка

В каждой КТ, профили почв отбирались путем снятия 3 мм слоя с площади 1 м²для измерения содержания ⁷Ве. Для измерения содержания ¹³⁷Сs пробы почвы отбирались одно-сантиметровыми слоями на глубину до 10 см., а также на глубине 15 и 20 см. Площадь отбора составляла 30х30 см. Пробы сушились, взвешивались, измельчались и образцы массой от 1,2 до 1,8 кг помещались в сосуды Маринелли для последующего анализа активности радионуклидов.

Измерения спектров проб приведены в геометрии Маринелли на γ – спектрометре со сцинтилляционным детектором (NaI(Tl), Ø 63x63 мм, $\Delta E_{\gamma}/E_{\gamma} \approx$ 8,5 % на $E_{\gamma} = 1332$ кэВ). Отдельные пробы измерены на спектрометре с HPGe детектором (относительная эффективность – 25 %, $\Delta E_{\gamma} = 1,8$ кэВ на $E_{\gamma} = 1332$ кэВ). Гамма спектры регистрировались в режиме 1024 канального, в первом случае, и 8192 канального анализатора импульсов во втором. Длительность измерений проб составляла 2 – 6 часов.

Калибровка спектрометров по эффективности регистрации γ – излучений проведены на эталонных источниках ²²⁶Ra, ²³²Th, ⁴⁰K и ¹³⁷Cs из комплекта ОМАСН с плотностью наполнителей 140 – 1800 г/л (эффективность регистрации γ – излучений 478 кэВ ⁷Be и 661 кэВ ¹³⁷Cs составляют для сцинтилляционного детектора $\varepsilon_{478} = 3$ % и $\varepsilon_{661} = 2$ %, для HPGe – $\varepsilon_{478} = 0,57$ % и $\varepsilon_{661} = 0,43$ %).

Обработка сцинтилляционных спектров – проведена разложением их на составляющие фона – F, PH 226 Ra, 232 Th, 40 K, 137 Cs (нормированные к спектру пробы на соответствующие коэффициенты k спектры эталонных источников E_{Ra}, E_{Th}, E_K и E_{Cs}). В измерениях на HPGe – детекторе активности PH установлены по интенсивностям соответствующих аналитических линий. Результаты, полученные обеими методами, согласуются между собой в пределах экспериментальных погрешностей.

Статистические погрешности определения ¹³⁷Cs в почвенных пробах для 3 часовых измерений на сцинтилляционном спектрометре не превышали 1,5 %.

Поверхностная активность РН (Бк/м²) рассчитывались путем суммирования удельной активности всех слоев профиля и с учетом площади отбора.

На рисунке 3.7 приведен спектр пробы почвы, где активность 137 Сѕопределена методом его разложения на составляющие. Можно заметить, что в этом случае погрешность определения 137 Сѕ меньше по сравнению с его определением непосредственно по ППП 661 кэВ, что связано с корректным учетом вклада комптоновского распределения гамма линий ЕРН с E_{γ} > 661 кэВ.

Рис. 3.7. Разложение спектра S (N_s= $2,63 \times 10^{6}$ имп) пробы (m=1,3 кг) поверхностного слоя почвы на составляющие. Удельные активности ²²⁶Ra – 32 (2,5) Бк/кг, ²³²Th – 28 (2,5) Бк/кг, ⁴⁰K – 604 (45) Бк/кг, ¹³⁷Cs – 53 (4) Бк/кг, ⁷Be – 32 (3) Бк/кг, ²³⁵U – \approx 5,3 Бк/кг

§ 3.2.2. Экспериментальные результаты и оценка интенсивности почвенных процессов на участках местности

Активности EPH 226 Ra, 232 Th, и 40 K; TPH 137 Cs и максимальная глубина в профиле; а также активности космогенного 7 Be по месяцам представлены в Таблице 3.5.

Значения ЕРН и ТРН не варьируются по месяцам. В целом, ЕРН ²²⁶Ra, ²³²Th и ⁴⁰К имели тенденцию к более высокой активности на более высоких участках водораздела, особенно на крутом подножии, и это связано с более грубыми, более молодыми коллювиальными отложениями, которые выветрились в относительно недавние времена. Коллювиальными отложениями называется обломочный материал, накопившийся на склонах гор или у их подножий путём перемещения с расположенных выше участков под влиянием силы тяжести.

Распределение активности ¹³⁷Cs вдоль трансекты и максимальная глубина миграции (таблица 3.7 и рисунок 3.8) согласуется с предполагаемыми гидрологическими характеристиками водосбора и с предполагаемой историей эрозии ландшафтных геоморфологических мест, как описано ниже. Высокие запасы и глубина миграции в образцах подножия (от 1 до 6) типичны для областей с высокой проницаемостью, которые собирают сток из непроницаемых пород выше.
Таблица 3.7

Группы геоморфологических местоположений, диапазон активностей ЕРН, ТРН, максимальная глубина

Геоморфологическое	ское ЕРН (кБк/м ²)			137	Cs		⁷ Be (Бк/м ²)			
описание места	²²⁶ Ra	²³² Th	⁴⁰ K	кБк/м ²	Z _{max} (см)	Апрель	Май	Июль	Август	
Горный хребет										
Скалы	1.2-1.8	2.6-3.5	27-31	-	-	-	-	-	-	
Крутое подножие	0.7-0.8	0.8-1.1	11-14	4.4-5.7	~20	180-300	280-460	130-170	50-90	
Конус выноса										
Вершина	0.4-0.5	~0.5	6.3-7.0	1.2-1.8	~10	100-170	140-220	20-25	10-15	
Ненарушенный склон	0.3-0.4	0.4-0.5	6.9-7.5	2.3-3.1	~10	150-270	190-380	40-50	20-30	
Наклонная тропа	0.3-0.4	0.4-0.5	8.4-9.2	0.1-0.4	4-5	70-110	90-150	15-25	10-15	
Подножие	0.5-0.6	0.4-0.5	6.0-6.6	1.4-1.8	20	110-190	120-240	20-30	10-20	
Предгорная равнина (адь	ыр)									
Южная часть	0.3-0.4	~0.5	7.6-8.5	1.9-2.7	10-15	140-290	180-340	30-40	20-25	
Обочина	~0.4	0.4-0.5	5.8-6.7	1.5-1.9	10	100-160	140-210	20-30	15-20	
Северная часть	0.4-0.5	~0.4	7.4-7.8	2.1-2.7	10-15	130-320	200-400	30-45	20-30	
Плайа (низина)	0.5-0.6	0.4-0.5	5.8-6.7	3.7-4.8	~20	300-360	390-470	90-110	50-80	
Овчарня	0.3-0.4	0.4-0.5	5.4-6.9	1.2-1.6	~10	90-140	90-160	20-25	10-20	
Овраг	0.5-0.6	0.4-0.5	4.5-5.8	>13	>20	430	570	200	110	
Бугор	0.2-0.3	0.2-0.3	4.2-4.8	0.8-1.0	~7	80	110	30	10	

миграции и активности КРН по месяцам

Верхний конец аллювиального конуса выноса (площадки с 7 по 10) должен получать некоторый приток от крутого подножия, но эти места отбора проб находятся вблизи источника водопоя и сильно затронуты выпасом скота. Более высокие активности измерены в почвах с ненарушенной структурой на площадке аллювиального конуса выноса (площадки 11, 13 и 16), что возможно свидетельствуют о нетронутом состоянии и, на первый взгляд, могут быть выбраны в качестве фоновых точек для оценки скорости перераспределения почвы. Очень низкая активность и неглубокая миграция ¹³⁷Cs, отмеченная на площадках 12, 14 и 15, указывают на ветряную и водную эрозию. Наконец, подножие аллювиального конуса выноса (площадки 17 и 18) характеризуется большей глубиной миграции, но более низким запасом, чем для незатронутых почв. Мы полагаем, что это является следствием эрозии исходного профиля ¹³⁷Cs и последующего осаждения грубых донных осадков ¹³⁷Cs во время наводнений. Несколько большая активность ²²⁶Ra и ²³²Th в сравнении с ненарушенными покровами почв конуса выноса, косвенно подтверждают эту гипотезу.

Почвы предгорной равнины (адыров) также содержат ¹³⁷Cs, при этом активности и глубина миграции ¹³⁷Cs в них соответствует предполагаемому режиму гидрологии и эрозии. Предгорные равнины обычно являются предпочтительными местами выпаса из-за их равномерной топографии и предсказуемой растительности. Южные и северные площадки (19 по 23 и с 26 по 28) очень похожи в отношении содержания ¹³⁷Cs и глубины миграции и могут фактически быть приемлемыми фоновыми точками ландшафта, если можно установить, что на них не влияет эрозия или отложения. Более низкие активности ¹³⁷Cs и малые глубины миграции на обочине (площадки 24 и 25) и овчарне (площадки 31 и 32) указывают на серьезную степень эрозии на этих участках.

Плайа (низина) принимает и удерживает большое количество воды от крупных осадков. Высокие запасы и глубокая миграция ¹³⁷Cs могут быть результатом быстрой инфильтрации во время наводнений в периоды пиковых

осадков или отложениями, обогащенными цезием, верхних слоев профиля почвы, перемещаемого грязевыми потоками.

Рис.3.8. Активности ¹³⁷Cs по глубинам: овраг = R; крутое подножие = 1; плайа (адыр "низкий") = 30; конус выноса, ненарушенный склон = 11; северная часть предгорной равнины = 26; южная часть предгорной равнины = 20; вершина конуса выноса = 8; обочина (предгорная равнина) = 24; подножие конуса выноса = 18; бугор = K; и тропа на склоне холма = 14

Наконец, прилегающий овраг и холм являются областями с максимальными запасами ¹³⁷Cs, и с наибольшей и второй самой низкой глубиной миграции, соответственно. Мы полагаем, что грубые отложения в овраге и концентрация сточных вод привели к накоплению большого количества ¹³⁷Cs. Малые глубина миграции и запасов ¹³⁷Cs на бугре согласуются с повышенными темпами ветровой эрозии, которые часто отмечаются для бугров [46].

Краткосрочные темпы перераспределения почв, основанные на распределениях ⁷Ве вдоль линии трансекты, сложно поддаются объяснению. Активности ⁷Ве в апреле и мае примерно коррелируют с активностями ¹³⁷Сs в большинстве площадок. В августе все площадки потеряли от 87% до 93% от уровня активности ⁷Ве, отмеченного в мае. Только конус выноса, овраг и почва плайи (низина) потеряли менее 87% майской активности. Это возможно из-за того, что эти площадки являются местами накопления седиментации вызванной ветровой эрозией и, в связи с этим, в последующих исследованиях необходимо непрерывно собирать данные о скорости ветра. Также для определения скорости и схем перераспределения почвы с использованием данных о содержании ⁷Ве необходим более частый отбор проб почвы.

В почвах аридных зон миграция 137 Cs практически не исследована. Поэтому полученные данные о его вертикальном распределении мы попытались описать в рамках ряда моделей, разработанных в разное время для почвенно-климатических зон средней полосы России [47]. Лучшее приближение к нашим экспериментальным данным дало их описание формулой диффузии, в которую мы ввели дополнительный член Z_M – характеризующий глубину слоя с максимальным запасом 137 Cs:

$$q_{z} = [a \exp(\lambda t) (\pi D t)^{1/2}] \exp[-(Z - Z_{M})^{2} / 4D t]$$
(3.1)

где D-коэффициент диффузии, t-время, отсчитываемое от 1964-года (максимум глобальных выпадений ¹³⁷Cs). В сухих степных почвах, в которых максимальная глубина миграции ¹³⁷Cs не превышает Z_{max}≤5 см, его

распределение также удовлетворительно описывается экспоненциальной зависимостью:

$$q_z = q_{z=0} \exp(-\beta Z) \tag{3.2}$$

где β -коэффициент миграции, обратная величина которого 1/ β характеризует глубину слоя в котором $q_{z=0}/q_{1/\beta}$ =e. Расчеты выполнены методом перебора значений коэффициентов D и β из условия минимума квадратичного отклонения от экспериментальных данных. В качестве примера, на рис. 3.9 результаты расчетов сравнивается с экспериментальными данными для почв отдельных пробных площадок на территории Нуратау.

Рис. 3.9. Вертикальные распределения ТРН ¹³⁷Сs в почве отдельных площадок и их аппроксимация диффузионным (сплошная линия) и экспоненциальным (пунктирная линия) уравнениями

Полученные экспериментальные данные о пространственном распределении ¹³⁷Cs указывают на его однозначную связь с процессами переноса почв, что в свою очередь подтверждает возможность применения в этих исследованиях гамма сцинтилляционных спектрометров с использованием предложенного нами метода обработки спектров путем последовательного их разложения на составляющие.

§ 3.3 Ускоренная оценка радиационной безопасности строительных материалов

ЕРН присутствуют повсюду в окружающей среде и обуславливают до 85 % дозы, получаемой населением [48]. Радиоактивность окружающей среды в основном связана с нуклидами из семейств урана и тория, а также ⁴⁰К. Измерение содержания ЕРН в строительных материалах важно для оценки воздействия радиации на людей, которые проводят до 80% своего времени внутри помещений. Показателем безопасности строительных материалов является удельная эффективная активность (Ra_{eq}), величина, которая регулируется национальными и международными документами [22,49].

В наших исследованиях мы применяли следующую формулу для вычисления значений *Ra_{eq}* [21]:

$$Ra_{eq} = A_{Ra} + 1.3A_{Th} + 0.09A_K \tag{3.3}$$

где A_{Ra} , A_{Th} и A_K удельные активности в Бк/кг ²²⁶Ra, ²³²Th и ⁴⁰K соответственно.

В западной литературе широко используется другой вариант этой формулы [50] где *R*_{*a*_{*eq*}} имеет немного другие коэффициенты для *A*_{*Th*} (1.43) и *A*_{*K*} (0.077).

Эти формулы предполагают что одну и ту же дозу создают 370 Бк/кг 226 Ra, 260 Бк/кг 232 Th и 4810 Бк/кг 40 K. Материалы для которых $Ra_{eq} < 370$ *Бк / кг* считаются безопасными согласно [21] и [51]. Аналогичное предельное

значения для *Ra_{eq}* приводиться в отчете организации экономического сотрудничества и развития [49].

Обычно время, необходимое для проведения анализа строительных материалов может составлять до 40 дней. Это обусловлено тем, что необходимо учитывать возможное нарушение равновесия между ²²⁶Ra и его дочерними продуктами распада. Стандартная процедура подготовки проб рекомендует герметизацию и выдержку (до 10 периодов полураспада ²²²Rn) для установления радиоактивного равновесия [52].

Следует отметить, что, по мнению разных авторов, время измерения 1 образца может варьироваться от 6 до 12 часов [53–55]. Вышеуказанные факторы затрудняют проведение массовых анализов на радиационную безопасность строительных материалов. Предприятия стройиндустрии несут дополнительные издержки в связи с необходимостью длительного ожидания заключения испытательных лабораторий, без которого реализация готовой продукции невозможна.

Европейский Парламент [56] и МАГАТЭ [57] указывают на потребность воздействия возрастающую оценки естественной радиоактивности строительных материалов на население. Усилия ПО каталогизации материалов [58] и обеспечения in-situ скрининга [59] являются весьма ценными. Однако, учитывая, что большая часть населения в развивающихся странах для строительства своего жилья использует побочные продукты переработки и промышленные отходы [60], требуются недорогое оборудование и эффективные по времени методы на уровне международной передовой практики для контроля безопасности материалов.

Нами исследована возможность проведения экспресс-анализов образцов строительных материалов без их выдержки и определено оптимальное время измерений для выполнения большого количества анализов.

§ 3.3.1. Современное состояние исследований радиационной безопасности строительных материалов

79

Международное и национальное регулирование радиационной безопасности строительных материалов.

Впервые нормирование радиоактивности строительных материалов было предложено в 1971 г. сотрудниками Ленинградского научноисследовательского института радиационной гигиены [61]. Были определено, что для отдельных видов строительных материалов доза облучения гонад доходила до 1,5 мЗв/год. В связи с этим, исходя из фактических уровней облучения населения, были предложены допустимые концентрации гаммаизлучающих радионуклидов, соответствующих дозе облучения гонад 1,5 мЗв/год. Эти концентрации равны для ²²⁶Ra - 10 пкюри/г, ²³²Th - 7 пкюри/г, и К - 0,15 г/г. Для смеси изотопов должно выполняться условие:

 A_{Ra} (пкюри/г) /10 + A_{Th} (пкюри/г) / 7 + A_K (г/г) / 0,15 ≤ 1 (3.4)

Предложенное значение допустимого содержания указанных радионуклидов ограничивает использование относительно небольшого числа строительных материалов.

Величина удельного радоновыделения определяется эффективной концентрацией радия в стройматериале (произведение концентрации радия на коэффициент эманирования и плотность материала). Коэффициент эманирования радона для большинства строительных материалов составляет несколько процентов, а длина диффузии радона для кирпича и легкого бетона сравнима с толщиной стены и в связи с этим практически весь радон попадающий во внутренние поры материала выходит из него. Предложенное ограничение по концентрации радия и тория обуславливают условие не превышения лимита по объемной активности радона и торона в воздухе помещений.

В работе [50] авторы представили формулу 3.4 с учетом изотопного отношения ⁴⁰К в следующем виде:

A_{Ra} (пкюри/г) /10 + A_{Th} (пкюри/г) / 7 + A_K (пкюри/г) / 130 ≤ 1 (3.5)

Указанным выше предельным концентрациям радионуклидов в пкюри/г

соответствуют значения в единицах Бк/кг: ²²⁶Ra - 370 Бк/кг, ²³²Th - 259 Бк/кг, и ⁴⁰K - 4810 Бк/кг.

Суммарную удельную активность (эквивалент радия в западной интерпретации) можно представить в виде:

$$Ra_{eq} = A_{Ra} + 1,43A_{Th} + 0,077A_{K}$$
(3.6)

Эта формула и ее различные модификации при оценке гамма облучения внутри помещений применяются практически во всех странах мира. Различия в формулах обусловлены принятыми предельными критериями гамма облучения, а также оценками вклада радия содержащегося в стройматериалах в объемную активность радона в воздухе помещений, так как применяются различные оценки параметров воздуха, уровня вентиляции и характеристик стройматериалов.

Широкий разброс активности радионуклидов даже для одного типа стройматериалов обуславливает необходимость контроля их радиационной безопасности, особенно при использовании промышленных отходов в качестве добавок при производстве стройматериалов.

Ниже приведены регуляторные критерии радиационной безопасности в некоторых странах мира [62].

Австрия применяет следующие рекомендуемые уровни для индекса активности:

 $A_{K}/10\ 000 + A_{Ra}/1000 \times (1 + 0.15 \times \sum \text{density} \times \text{thickness}) + A_{Th}/600 \le 1.$

В Австрии также рекомендуется уровень для бета излучения строительных материалов, который должен быть <1 Bq/cm². (А – активность радионуклида в Bq/kg).

Финляндия применяет максимальный разрешенный уровень дозы гамма облучения внутри помещений, обусловленный строительными материалами, 1 мЗв/год. Этот уровень соответствует индексу активности, определяемым соотношением: C(Th)/200 + C(Ra)/300 + C(K)/3000 \leq 1. (C - активность радионуклида в Bq/kg).

Латвия применяет следующие обязательные требования:

1) Для жилых помещений и материалов внутренней отделки: $(A_{Ra} + A_{Th})/170 \le$ 1 и активность ⁴⁰К не должна превышать 1500 Bq/kg;

2) Для производственных помещений, внешних отделочных материалов, дорожного покрытия в городах $(A_{Ra} + A_{Th})/250 \le 1$ и активность ⁴⁰К не должна превышать 2000 Bq/kg;

3) Для внешних отделочных материалов промышленных предприятий и дорожного покрытия за пределами населенных пунктов $(A_{Ra} + A_{Th})/300 \le 1$ и активность ⁴⁰К не должна превышать 2500 Bq/kg.

Литва - радиационная безопасность строительных материалов регламентируется следующими соотношениями:

 $A_{Ra}/300 + A_{Th}/200 + A_K/3000 \le 1$ для всех строительных материалов, $A_{Ra}/700 + A_{Th}/500 + A_K/8000 + A_{Cs}/2000 \le 1$ для дорожного покрытия, $A_{Ra}/2000 + A_{Th}/1500 + A_K/20000 + A_{Cs}/5000 \le 1$ для ландшафтных работ (при этом необходимо покрытие материалом с менее высокой активностью).

Норвегия применяет рекомендуемый уровень содержания РН в строительных материалах:

 226 Ra/300 + 232 Th/200 + 40 K/3000 \leq 1. 226 Ra< 200 Bq/kg.

Польша – разрешенный уровень определяется следующим соотношением:

0,0027 C_{Ra} + 0,0043 C_{Th} + 0,0027 C_{K} < 1. (С – активность в Bq/kg). C_{Ra} < 185.

Россия: Применяется следующий критерий: $A_{eff} = A_{Ra} + 1.31A_{Th} + 0,09A_{K}$. Лимит для A_{eff} - 370 Bq/kg для новых зданий, 740 Bq/kg для промышленных предприятий и дорожного покрытия в населенных пунктах, и 2,8 kBq/kg для дорожного покрытия вне населенных пунктов. (Нормы Радиационной Безопасности НРБ-96.)

Словакия, использования строительных материалов разрешено при выполнении условия C_{Ra} + 1,25 C_{Th} + 0,086 C_{K} < 370Bq/kg.

Республика Словения, обязательный контрольный уровень определяется индексом гамма активности: $C_{Ra}/400 + C_{Th}/300 + C_K/5000 + C_{artif}/4000 < 1$. С в Bq/kg. Доза гамма излучения < 0.50 µGy/h. Активность бета излучателей < 40

 Bq/dm^2 .

Германия, разрешенный уровень для радия-226, находящегося в равновесии с дочерними продуктами распада 200 Bq/kg.

Люксембург, контрольный уровень для⁴⁰К: 5000 Bq/kg, ²³²Th: 250 Bq/kg и ²²⁶Ra: 350 Bq/kg.

Чешская Республика применяет требование по содержанию ²²⁶Ra в Bq/kg: «*Разрешенный уровень»*: 150-200 Bq/kg для материалов при строительстве зданий, где люди пребывают 1000 ч/год (зависит от типа материала); 1000 Bq/kg для материалов, используемых при строительстве других зданий. «Рекомендуемый уровень»: 80-120 Bq/kg для материалов при строительстве зданий, где люди пребывают 1000 ч/год; 300-500 Bq/kg для материалов, используемых при строительстве других зданий.

Швеция избрала другой регуляторный подход в обеспечении радиационной безопасности нового жилья. Он не имеет специальных правил по разрешенному уровню содержания радионуклидов В строительных материалах. Вместо этого в Швеции имеются юридические функциональные требования к уровню эманации в новых зданиях. Согласно Шведским Строительным Нормам максимально допустимая концентрация объемной активности радона в воздухе вновь построенного жилья, где люди живут постоянно, составляет 200 Бк / м³, а мощность дозы гамма-излучения – 0,5 µЗв / ч. Для выполнения этих функциональных требований необходимо уделять должное внимание всем источники радона и гамма-излучения: земля, строительные материалы и вода.

Скандинавские страны имеют общие правила эко-маркировки (ярлык Swan) для строительства. Требуется выполнение следующего условия: $C_K / 3000 + C_{Ra} / 300 + C_{Th} / 200 \le 1$. Существует также требование использовать индекс по радию-226: $C_{Ra} (100) \le 1,0$. В настоящее время предпринимаются усилия по маркированию бетона ярлыком Swan.

Израиль имеет контрольные уровни для радиоактивных элементов в строительных материалах: 226 Ra - 50 Бк / кг; 232 Th - 50 Бк / кг; 40 K - 500 Бк / кг;

доза гамма-излучения 0,7 мЗв / год; плотность потока радона 1 Бк / м² ч.

Япония не регламентирует радиационную безопасность строительных материалов. Тем не менее, японская промышленность гипсокартона осознает проблему радона. Они пытаются уменьшить эксхаляцию радона из гипсовых плит путем выбора гипса с низким содержанием фосфата радия и смешивания его с природным гипсом при производстве гипсокартона.

С 1996 года Европейская Комиссия совместно с МАГАТЭ разрабатывало несколько руководств и специфических рекомендаций касательно содержания ЕРН в различных материалах. ЕК приняло решение гармонизировать, содействовать продвижению и консолидировать эти принципы т рекомендации включив их новые директивы ЕС по снижению нормативов Базовых Стандартов Безопасности для защиты от рисков, связанных с облучением ионизирующим излучением.

В документе Евроатома [56] вопрос радиационной безопасности Статье 75 материалов В строительных отражен «Гамма-излучение строительных материалов». Согласно Приложении VIII этого документа для идентифицированных типов строительных материалов должны быть определены удельные активности первичных радионуклидов Ra-226, Th-232 (или его продукта распада Ra-228) и K-40.

Индекс активности I определяется по следующей формуле:

$$\mathbf{I} = \mathbf{C}_{\text{Ra226}} / 300 \text{ }\mathbf{5}\mathbf{K} / \mathbf{K}\mathbf{\Gamma} + \mathbf{C}_{\text{Th232}} / 200 \text{ }\mathbf{5}\mathbf{K} / \mathbf{K}\mathbf{\Gamma} + \mathbf{C}_{\text{K40}} / 3 \text{ }\mathbf{000} \text{ }\mathbf{5}\mathbf{K} / \mathbf{K}\mathbf{\Gamma}$$
(3.7)

где С_{Ra226}, С_{Th232} и С_{K40} представляют собой концентрации активности в Бк / кг соответствующих радионуклидов в строительном материале.

В целях сравнимости различных подходов соотношение индекса активности выведены для гипотетической комнаты (похожей на бункер размером 4 м х 5 м х 2,8 м) со стенами, потолком и полом толщиной 20 см и плотностью материала подобной бетону (2350 кг / м³). В этой модели также предполагается: ежегодное время экспозиции 7000 ч / год; коэффициент дозовой конверсии 0,7 3в Gy⁻¹ и фиксированная фоновая активность 50 nGy h⁻

В странах СНГ радиационная безопасность строительных материалов регламентируется межгосударственным стандартом ГОСТ 30108-94 [21].

1

В Узбекистане требования к радиационной безопасности регламентируются «Законом о радиационной безопасности» и Санитарными нормами и Правилами (СанПиН) № 0193-06 [63], разработанными с учетом стандартов МАГАТЭ [64], а радиационная безопасность строительных материалов регулируется требованиями [21,63,65].

Эффективная удельная активность (А_{эфф}) природных радионуклидов в строительных не должна превышать:

- для материалов, используемых в строящихся и реконструируемых жилых и общественных зданиях (I класс):

 $A_{3\phi\phi} = A_{Ra} + 1,3 A_{Th} + 0,09 A_{K} \le 370 E \kappa / \kappa^{2}$, где A_{Ra} и A_{Th} - удельные активности ²²⁶Ra и ²³²Th, находящихся в равновесии с остальными членами уранового и ториевого рядов; A_{K} - удельная активность K-40 (Бк/кг);

для материалов, используемых в дорожном строительстве в пределах территории населенных пунктов и зон перспективной застройки, а также при возведении производственных сооружений (II класс): *А*_{эфф} ≤ 740*Бк*/*кг*

- для материалов, используемых в дорожном строительстве вне населенных пунктов (III класс): $A_{3\phi\phi} \leq 1.5 \kappa E \kappa / \kappa 2$

При 1,5 кБк/кг <А_{эфф}<4,0 кБк/кг (IV класс) вопрос об использовании материалов решается в каждом случае отдельно по согласованию с территориальным ЦГСЭН. При А_{эфф}> 4,0 кБк/кг материалы не должны использоваться в строительстве.

Актуальные данные по содержанию радионуклидов в стройматериалах

Активность ЕРН в строительных материалах варьируется в зависимости от типа материала и природы его происхождения. Типичные значения активностей радионуклидов в Бк/кг основных стройматериалов, производимых в Европе, таких как бетон или силикатный кирпич - 40, 30, 400 и 10, 10, 330 для 226 Ra, 232 Th and 40 K, соответственно [66]. В таблицах 3.8 и 3.9 представлены типичные значения ЕРН в материалах, используемых как в кладке, так и в качестве отделочных материалов.

Таблица 3.8

Вариации активности радионуклидов (Bq/kg) в строительных материалах

Материал	²²⁶ Ra[Bq/kg]	²³² Th[Bq/kg]	⁴⁰ K[Bq/kg]
Бетон	18-67	3-43	16-1100
Легкий бетон	10-60	6-66	51-870
Кирпич	7-140	8-127	227-1140
Гипс	1-67	0.5-190	22-804
Цемент	13-107	7-62	48-564

Европы

Таблица 3.9

Вариации активности радионуклидов (Bq/kg) в отделочных материалах

Европы

Материал	²²⁶ Ra[Bq/kg]	²³² Th[Bq/kg]	⁴⁰ K[Bq/kg]
Керамика	25-193	29-66	320-1049
Гранит	ND-160	ND-354	24-2355
Плитка	33-61	45-66	476-788
Мрамор	1-63	0.4-142	9-986

В таблице 3.10 приведены сводные данные по содержанию ЕРН и удельной эффективной активности для образцов различных строительных материалов по регионам мира.

Таблица 3.10

Сравнение эффективной активности и эквивалентной активности радия в

строительных материалах и изделиях в различных странах

Материал	Страна	A	Активность (Бк/кг)				
Изделие		²²⁶ Ra	²³² Th	⁴⁰ K	Ra(eqv)		
Soil	Turkey	37±17	40±18	667±282	-	[67]	
(Грунт)	Worldwide	35	30	400	-	[68]	
	Egypt	34.6±1.7	60.2±3	212.3±10.3	137	[54]	

Продолжение таблицы 3.10

Sand	Algeria	12±1	7±1	74±7	28±7.1	[69]
(Песок)	Bangladesh	14.53 ± 8.2	34.78±2.4	303.11±141.91	87.52±38.0	[70]
					5	

	Brazil	10.2	12.6	51	34	[71]
	Brazil	14.3	18	807	102.2	[71]
	Egypt	9.2	3.3	47.3	16.6	[72]
	Greece	18.7	17±10	367±204	-	[73]
	India	9.4	52.05	65.5	84.15	[74]
	India	43.7	64.4	455.8	170.8	[75]
	Kuwait	7.4±0.6	7.2±0.3	360±14	45.4	[76]
	Malaysia	60±3	13±2	750±53	136±33	[77]
	Jordan	25.1	14.6	188.1	60.5	[78]
	Zambia	25±1.0	26±2.0	714±12	117±12	[79]
	Cameron	14±1	31±1	586±13	104.06	[80]
	Egypt	20.8±1	22.5±1.2	148.8±13.3	64.4	[54]
	Hong Kong	24.3	27.1	841	N.D	[81]
Sand / Gravel	Cuba			NR		[82]
	Iran	15	5	343		[83]
гравий)	iuii	1.5		5-15		[05]
(public)	Bangladesh	248	219	389		[84]
	German Democratic	16	18	355		[85]
	Rep.					
	Hong Kong			NR		[86]
	Kenva	11	5	802		[87]
Natural stone				002		[0,]
(природный камень)	Iran	8934	5	265		[83]
)	Bangladesh	67	46	471		[84]
	German	45	232	1965		[85]
	Democratic					
	Kep.	100	122	1249		[97]
	Hong Kong	180	122	1248		[80]
D 1	Kenya	38	96	839		[87]
Brick	Cuba	57	12	2511		[82]
(кирпич)	Iran			791		[83]
	Bangladesh			234		[84]
	German			274		[85]
	Democratic					
	Rep.					10 0
	Hong Kong			627		[86]
	Kenya			379		[87]
Concrete	Cuba	25	12	845		[82]
(Бетон)	Iran			NR		[83]
	Bangladesh	166	171	295		[84]
	German	31	24	458		[85]
	Democratic Pop					
	Hong Kong	83	74	776		[86]
	Vonue	11	/ +	201		[00]
	Kenya	11	00	891		[8/]

Продолжение таблицы 3.10

Cement block	Cuba	24	11	537		[82]
-----------------	------	----	----	-----	--	------

(бетонный блок)	Iran	87	7	402		[83]
,	Bangladesh	120	132	506		[84]
	German	75	23	325		[85]
	Democratic					
	Rep.					
	Hong Kong			NR		[86]
D 1 1	Kenya	11	66	891		[87]
Portland Cement	Cameron	27±4	15±1	277±16	70	[80]
(портланд- цемент)	Finland	44	26	241	n.m	[49]
	Norway	30	18	241	n.m	[49]
	Sweden	55	47	241	n.m	[49]
	U.K	22	18	155	n.m	[49]
	Hong Kong	19.2	18.9	127	n.m	[81]
	Brazil	61.7	58.5	564	188.8	[71]
	Bangladesh	62.3±9.7	59.4±7.4	329.0±22.4	172.8±19.0	[70]
	Malaysia	51±1.0	23±1.0	832±69	8	[77]
	Bangladesh	29.7	54.3	523	188±27	[70]
	Algeria	41±7	27±3	422±3	148	[69]
	Italy	38±14	22±14	218±248	112±8.2	[88]
	Zambia	23.2	32±3	134±13	92±60	[79]
	India	37	24.1	432.2	79±11	[75]
	Egypt	31.3±3.6	11.1±1.1	48.6±4	104.7	[72]
	Egypt	36.6±4.4	43.2±2.2	82±4.1	50.9	[89]
	K.S.A	38.4±3.8	45.3±1.2	86±4	103 108	[90]
Clay brick	Algeria	65±7	51±5	675±4	190±9.5	[69][24]
(глиняный кирпич)	Bangladesh	29.47±6.3	52.5±12.1 9	292.25±43.65	127.14±9.8 5	[70][25]
	Brazil	46.8±19.4	119.9±11 0.9	322±152	247.7±170. 3	[71][26]
	Egypt	24.5	24.4	227	77	[72]
	Greece	35±11	45±15	710±165	-	[73]
	India	18.03	33.33	44.8	69.15	[74]
	Malaysia	241±3	51±4	7541±272	895±107	[78]
	Egypt	33±2.0	37±1.7	511±15.8	-	[72]
	Zambia	32±2	81.7	412±19	180±22	[79]
	Camiron	49.6±0.3	91±2	172±4	193.34	[80]
	Egypt	47.3±2.4	68.9±4.1	275.7±12.3	167	[54]
	Italy	11	2.0±2.0	22±3	14±11	[88]
	Egypt	27.8±1.4	46.6	66±3.3	79.85	[90]
Limestone	Finland	7.2	25	-	-	[49]
(известняк)	UK	22	7	141	-	[49]
	Brazil	6.3	N.D	154	18.1	[71]
	Italy	6.0	2.0	32	12	[88]
	Egypt	40.7±2.4	65.5±4.2	77.9±9.6	140.3	[54]

Продолжение таблицы 3.10

Gypsum	Cameron	27±4	15±1	277±16	70	[80]
(гипс)	Finland	44	26	241	-	[49]

Norway	30	18	241	-	[49]
Sweden	55	47	241	-	[49]
UK	22	18	155	-	[49]
Brazil	61.7	58.5	564	188.8	[71]
Bangladesh	29.7	54.3	523	148	[84]
Algeria	41.7	27±3	422±3	112±8.2	[69]
Italy	38±14	22±14	218±248	92±60	[88]
Zambia	23±2	32±3	134±13	79±11	[79]
Egypt	31.3±3.6	11.1±1.1	48.6±4	50.9	[72]
Egypt	33.8±3.1	61.8±3.3	89.0±5	129	[54]

В представленной информации отсутствуют данные по содержанию ЕРН в строительных материалах для Узбекистана. Это связано с тем, что исследования по указанной проблематике начались в Узбекистане относительно недавно.

§ 3.3.2. Использованные приборы, материалы и методы

Отбор и подготовка проб

Следующие представительные образцы основных строительных материалов, используемых в Узбекистане, были получены от местных производителей: (1) керамический кирпич, (2) щебень, (3) красный крупный песок, (4) серый гранит и (5) бетонные кубики. Образцы измельчали и просеивали через сито размером ячейки 5 мм. Зерна распределяли на лотке равномерно и сушили в духовке при температуре 110°C в течение 3 часов. Образцы затем взвешивали и упаковывали в 1 литровые сосуды Маринелли. Для целей дальнейшего сравнения некоторые образцы выдерживали в герметически закрытых сосудах до 10 периодов полураспада, чтобы достичь равновесия между ²²⁶Ra и его ДПР.

Оборудование, калибровка и анализ данных

Все измерения проводились в ядерно-физической лаборатории Самаркандского государственного университета, а данные были обработаны в лаборатории ядерной физики и приборостроения, Зайберсдорф, МАГАТЭ.

Образцы измеряли в 1 литровой геометрии сосуда Маринелли с помощью двух сопоставимых сцинтилляционных спектрометров NaI(Tl):

Спектрометр-1 (Спк-1) производства ООО "РАДЭК" (Санкт-Петербург, Российская Федерация) с размером кристалла Ø80 x 80 мм и Спектрометр-2 (Спк-2), выпущенный Объединённым институтом ядерных исследования (ОИЯИ, Дубна, Российская Федерация) с размером кристалла Ø63 x 63 мм и светодиодной стабилизацией встроенной высокого напряжения фотоумножителя. Измеренные энергетические разрешения спектрометров составили соответственно 8.2% и 8.6% для линии 662 кэВ (однофотонное излучения от источника ¹³⁷Cs). Спк-1 и Спк-2 были помещены в низкофоновые свинцовые защиты толщинами 7 см и 8 см соответственно. Спк-1 был основным спектрометром, используемым для измерения всех образцов, в то время как Спк-2 использовался для измерения некоторых образцов для сравнения. Спектрометр РАДЭК был оснащен мультиканальным анализатором MD-198 [93], состоящим из низковольтного источника питания (источник высокого напряжения встроен в детектор), усилителя, АЦП и ЦАП. Данные передавались через USB порт в персональный компьютер. Данные со спектрометра ОИЯИ через элементы аналоговой электроники передавались на встроенный в компьютер АЦП для последующего анализа. Во время измерений, скорости счета находились в пределах 25-130 событий/сек. Для измерений с длительностью 21600 сек, живое время было в пределах от 21597 до 21584 сек, т.е. мертвым временим можно было пренебречь. Анализ спектрометрических данных был реализован программными пакетами ASW (RADEK) и МАРС (ОИЯИ).

Калибровка спектрометров по эффективности была проведена с помощью аттестованных объемных источников (1 литровые сосуды Маринелли) ²²⁶Ra, ²³²Th, ⁴⁰K и ¹³⁷Cs с плотностями наполнителей 200, 900 и 1700 г/л соответственно [94]. Активность радионуклидов варьировалась от 1,75 до 6,2 кБк, а неопределенности составляли $\pm 5\%$ для уровня достоверности 0,95.

Контроль качества измерений проводился путем проверки коэффициентов эффективности, используемых при расчетах активности. В

процедуре проверки использовались 250 мл цилиндрические образцовые источники в контейнерах с известной матрицей радионуклидной смеси: ²²⁶Ra (420 Бк), ²³²Th (240 Бк), ⁴⁰K (920 Бк) и ¹³⁷Cs (270 Бк). Неопределенность активности источников составляла \pm 10% при уровне достоверности 0,95. Источники были подготовлены в Радиевом институте им. Хлопина (Санкт-Петербург, Российская Федерация) [95].

Гамма-спектрометрический анализ образцов проводился как до, так и после выдержки 10, 20, 30 и 40 дней. Время измерения образцов составляло 40, 180, 360 и 720 минут. Фоновые спектры измеряли в течение 3, 24 и 60 часов и затем их вычитали из спектров проб. Фон измеряли в той же геометрии Маринелли, используя дистиллированную воду в качестве наполнителя.

Спектры обрабатывались путем анализа событий в 6 энергетических интервалах: 612-709, 870-1000, 1068-1178, 1385-1540, 1677-1846 и 2500-2720 кэВ.

Анализ спектров проводили в соответствии со следующей процедурой. Спектр образца можно представить как суперпозицию спектров радионуклидов содержащихся в нем и фона. Количество импульсов *S_i* в каждом "окне" спектра образца представляется как:

$$S_i = \sum_j \frac{X_j}{A_j} S_{i,j} \tag{3.8}$$

где,

i - "окно";

j- нуклид, т.е. ²²⁶*Ra*, ²³²*Th* и т.д.

 S_i - скорость счета в *i*-м окне после вычета фона, имп/сек;

X_j - неизвестная (желаемая) активность *j*-го нуклида в спектре пробы,
 Бк;

A_j - активность *j*-го радионуклида в спектре стандартного источника,
 Бк;

 $S_{i,j}$ -скорость счета в *i*-м окне *j*-го нуклида в спектре стандартного источника, имп/сек.

Величина $k_{i,j} = \frac{S_{i,j}}{A_j} \left(\frac{u M n}{c e \kappa \cdot E \kappa} \right)$ называется коэффициентом чувствительности для *i*-го-окна *j*-го нуклида и рассчитывается во время калибровки спектрометра измерением стандартных источников.

Выражение (3.8) является линейной переопределенной системой, состоящей из 6 уравнений и 4 неизвестных. Скорость счета для каждого окна $\left(\frac{N}{t}\right)$ выражается как:

$$\begin{cases} S_{1} = k_{1,1}X(Ra) + k_{1,2}X(Th) + k_{1,3}X(K) + k_{1,4}X(Cs) \\ S_{2} = k_{2,1}X(Ra) + k_{2,2}X(Th) + k_{2,3}X(K) + k_{2,4}X(Cs) \\ S_{3} = k_{3,1}X(Ra) + k_{3,2}X(Th) + k_{3,3}X(K) + k_{3,4}X(Cs) \\ S_{4} = k_{4,1}X(Ra) + k_{4,2}X(Th) + k_{4,3}X(K) + k_{4,4}X(Cs) \\ S_{5} = k_{5,1}X(Ra) + k_{5,2}X(Th) + k_{5,3}X(K) + k_{5,4}X(Cs) \\ S_{6} = k_{6,1}X(Ra) + k_{6,2}X(Th) + k_{6,3}X(K) + k_{6,4}X(Cs) \end{cases}$$
(3.9)

При обработке мы учитывали поправки к самопоглощению, предполагая линейную зависимость коэффициентов чувствительности от плотности образцов.

Плотность образца обычно не совпадает с плотностью стандартного источника для которого рассчитывались коэффициенты $k_{i,j}$. Поэтому имеется зависимость k от r (плотность):

$$k_{i,j,r} = \frac{S_{i,j,r}}{A_{j,r}} \quad r = \rho_0 \dots \rho_n \tag{3.10}$$

где $k_{i,j,r}$ - коэффициент чувствительности пробы для *i*-го окна, *j*-го нуклида; $r - nлотность (c/cm^3)$ и $\rho_0 ... \rho_n$ - плотности стандартных источников использованных для калибровки;

Учитывая (3.10), уравнение (3.8) можно переписать как:

$$S_{i,r} = \sum_{j} X_{j,r} \cdot k_{i,j,r}$$
(3.11)

Значения $k_{i,j}$ для желаемой плотности получают проводя линейную интерполяцию согласно формуле:

$$k_{i,j}^{\rho_u} = \left(\frac{k_{i,j,r_2} - k_{i,j,r_1}}{\rho_2 - \rho_1}\right) \cdot \left(\rho_u - \rho_1\right)$$
(3.12)

где $k_{i,j}^{\rho_u}$ - коэффициент чувствительности для неизвестной плотности ρ_u ; ρ_1, ρ_2 - плотности, близкие к ρ_u с известными коэффициентами чувствительности;

Применяя метод наименьших квадратов для решения системы (3.11) получаем неизвестные активности X(Ra), X(Th), X(K), X(Cs) радионуклидов содержащихся в пробе [96,97].

Мы также обработали несколько спектров методом разложения с помощью спектров стандартных источников для того, чтобы убедиться в том, что нет других радионуклидов с интерферирующими пиками, которые могут увеличить неопределенности в расчетах активностей 226 Ra, 232 Th и 40 K [98]. Пример разложения спектра пробы кирпича керамического, измеренного 6 часов на *Спк*-2, показан на Рис.3.10, что указывает на типичное качество спектра детекторной системы.

Рис. 3.10. Применение метода разложения к спектру пробы кирпича керамического

Время измерения пробы и фона составляло 6 и 24 часа соответственно. (а) – спектр пробы (S) и фона (B); (b) – S₁- спектр после вычета фона; E(Th) – спектр стандартного источника ²³²Th; (c) – S₂-спектр после вычета E(Th); E(Ra) – спектр стандартного источника ²²⁶Ra; (d) - S₃-спектр после вычета E(Ra); E(K) – спектр стандартного источника ⁴⁰K; (e) – S₄ – остаточный спектр показывающий отсутствие любых других гамма линий. Изменение количества импульсов из-за разложения продемонстрировано для региона интересов K-40 (1346.8-1559.4 кэВ).

Неопределенности были рассчитаны в соответствии с государственным стандартом [99] и ISO 5725 [100]. Неопределенности измерений имеют доверительный уровень 0,95 и состоят из случайных (статистических) и систематических ошибок. Последнее объясняется главным образом неопределенностями, связанными с аттестацией калибровочных источников и, соответственно, вычислением коэффициентов чувствительности спектрометра и неопределенностей, связанных с измерением массы образца.

§ 3.3.3. Нарушение радиоактивного равновесия между радием и его дочерними продуктами распада

Сравнение результатов от детекторов

Удельные активности (Бк/кг) ЕРН в пробах керамического кирпича, а также соответствующие абсолютные погрешности, измеренные спектрометрами *Спк-1* и *Спк-2* представлены в Таблице 3.11. Следует отметить, что для времени измерения 40 мин для пробы и 3 часа для фона, удельная активность радия, измеренная на *Спк-1* была 54.5 Бк/кг. Абсолютная и относительная погрешности составили 6.7 Бк/кг и 12.3%. При этом, для времени измерения 12 часов для пробы и 60 часов для фона на *Спк-2*, имеем следующие значения для удельной активности радия, а также погрешностей 51.8 Бк/кг, 4.1 Бк/кг и 8% соответственно. По вышеуказанным данным видно, что результаты, полученные с помощью обоих программных пакетов, совпадают в пределах погрешностей.

Удельные активности ²²⁶Ra, ²³²Th, ⁴⁰K и значения Ra_{eq} в пробе кирпича и их погрешности до выдержки проб. Результаты получены с

Нуклид	Спк-1 с ASW			Спк-2 с МАРС			
		(Бк/кг)			(Бк/кг)		
Время измерения	3ч	24 ч	60 ч	3ч	24 ч	60 ч	
Образец/фон							
Ra-226							
40 мин	54.5 ± 6.7	49.2 ± 5.0	52.6 ± 5.6	53.9 ± 7.5	54.5 ± 7.6	54.2 ± 7.6	
6 ч	53.4 ± 5.3	47.5 ± 5.2	51.6 ± 4.9	51.7 ± 4.6	52.3 ± 4.7	52.1 ± 4.7	
12 ч	53.8 ± 5.5	49.2 ± 4.8	51.9 ± 6.3	51.6 ± 4.6	52.1 ± 4.2	51.8 ± 4.1	
Th-232							
40 мин	42.1 ± 4.2	45.3 ± 4.4	43.7 ± 4.1	41.2 ± 7.0	41.2 ± 5.8	41.2 ± 6.2	
6 ч	44.1 ± 4.4	47.2 ± 4.5	41.7 ± 4.2	42.6 ± 3.4	42.6 ± 3.4	42.6 ± 3.4	
12 ч	42.6 ± 4.0	42.5 ± 4.3	40.3 ± 3.8	42.8 ± 3.4	42.9 ± 3.4	42.9 ± 3.4	
К-40							
40 мин	604.3 ±	597.9 ±	607.9 ±	585.2 ±	570.1 ±	577.0 ±	
	57.0	60.0	61.0	99.5	96.9	103.9	
6 ч	592.1 ±	590.8 ±	595.5 ±	620.3 ±	603.8 ±	611.3 ±	
	59.0	59.0	60.0	62.0	60.4	61.1	
12 ч	592.4 ±	591.9 ±	595.8 ±	625.7 ±	609.3 ±	$616.8 \pm$	
	59.0	59.0	60.0	62.6	60.9	61.9	
Ra(eq)							
40 ч	164.0 ±	162.0 ± 9.3	159.0 ± 9.3	157.6 ±	156.9 ±	157.2 ±	
	10.1			14.6	13.5	14.2	
6 ч	164.0 ± 9.5	162.0 ± 9.4	159.0 ± 9.0	160.2 ± 8.3	159.4 ± 8.3	159.9 ± 8.3	
12 ч	163.0 ± 9.2	158.0 ± 9.1	158.0 ± 9.0	160.9 ± 8.3	160.1 ± 8.0	160.4 ± 8	

помощью программ ASW и MAPC для разных времен измерения пробы и фона.

На Рис.3.11 показаны значения удельных активностей всех проб для разных времен измерения. Проба и фон измеренные 40 мин и 3 ч, 6 и 24 ч, 12 и 60 ч обозначены парой идентификаторов as (S40.B3), (S6.B24) и (S12.B60). Высоты столбцов представляют собой удельные активности (Бк/кг)²²⁶Ra, ²³²Th и ⁴⁰K и показаны на рисунках A, B и C соответственно. Как можно увидеть из Рис.2, значения удельной активности для (S40.B3) сопоставимы со значениями для (S6.B24) и (S12.B60).

Рис. 3.11 Удельные активности (Бк/кг) ЕРН во всех пробах до выдержки. А-²²⁶Ra, B – ²³²Th, C – ⁴⁰K. Времена измерения пробы и фона (обозначены здесь как S и B соответственно) были: 40 мин и 3 часа (S40.B3); 6 и 24 часов (S6.B24); 12 и 60 часов (S12.B60).

Рост активности Радия-226 в пробах

Результаты, касающиеся роста активности²²⁶Ra в различных образцах, а также изменение значений *Ra_{eq}* приведены в Таблице 3.12.

Поправочный коэффициент для радия (k) определяется как: $k = \frac{A_i}{A}$; где A_0

и A_{t} удельные активности радия до и после выдержки. Рост радия в процентном соотношении (*p*) вычисляется по формуле $p = (k-1) \cdot 100$.

Согласно экспериментальным данным, во время выдержки, наблюдаемый рост активности радия был минимален для проб керамического кирпича и щебня (11%) и максимален для пробы серого гранита (22%), что соответствует значениям поправочных коэффициентов 1,11 и 1,22. В случае серого гранита, изменение удельной активности радия на 22% приводит к изменению значения *R*_{*a*_{ea}} примерно на 6.5%.

Учитывая поправочный коэффициент *k*, можно переписать формулу (3.3) в следующем виде:

$$Ra_{eq} = k \cdot A_{Ra} + 1.3A_{Th} + 0.09A_{K} \tag{3.13}$$

Для наших проб, значение k лежит примерно в диапазоне от 1,1 до 1,2. Принимая консервативный подход, включив дополнительную 10% неопределенность (в сторону нижнего предела Ra(eq)) к максимально наблюдаемому поправочному коэффициенту ($k=1.2+0.1*1.2\approx1.3$), получаем значение k=1,3 учитывающее возможное нарушение равновесия между радием и его дочерними продуктами.

Таблица 3.12

Удельные активности ²²⁶Ra и Ra_{eq} (рассчитанные по формуле (1)) в измеренных пробах. Время измерения образцов: 6

Время	Красный песок		Керамичес	кий кирпич	Щеб	бень	Бетонны	е кубики	Серый	гранит
выдержки										
(дни)										
				Bper	мя измерения	фона				
Ra-226	24 ч	60 ч	24 ч	60 ч	24 ч	60 ч	24 ч	60 ч	24 ч	60 ч
(Бк/кг)										
0	19.5 ± 2.4	21.7 ± 2.2	47.5 ± 5.2	51.6 ± 4.9	32.9 ± 3.3	35.2 ± 3.5	20.8 ± 2.1	23.0 ± 2.3	82.2 ± 8.1	84.5 ± 8.2
10	20.2 ± 3.2	22.4 ± 3.4	50.0 ± 4.8	52.7 ± 5.0	36.8 ± 4.3	38.9 + 3.9	21.0 ± 3.7	23.2 ± 3.1	92.0 ± 8.7	94.3 ± 9.4
20	22.2 ± 3.6	23.1 ± 3.1	52.5 ± 4.6	55.2 ± 5.5	35.7 ± 3.9	37.9 ± 4.0	24.8 ± 2.3	26.9 ± 2.6	96.1 ± 9.5	98.5 ± 9.6
30	22.3 ± 2.8	26.5 ± 2.7	50.7 ± 5.3	53.4 ± 5.4	36.4 ± 3.6	38.6 ± 3.7	24.8 ± 2.3	26.9 ± 3.0	100.7 ± 9.6	103.1 ± 9.8
40	22.5 ± 2.3	24.8 ± 2.6	54.0 ± 5.2	56.7 ± 5.8	37.0 ± 3.7	39.2 ± 3.7	23.3 ± 2.8	25.5 ± 2.5	100.1 ± 10.0	102.5 ± 10.0
Raeg										
(Бк/кг)										
0	168.0 ± 11.2	168.0 ± 11.0	162.0 ± 9.4	159.0 ± 9.3	108.0 ± 6.6	109.0 ± 6.5	80.6 ± 4.7	80.8 ± 4.6	290.0 ± 16.8	290.0 ± 16.7
10	171.0 ± 11.4	171.0 ± 11.4	164.0 ± 9.4	164.0 ± 9.3	110.0 ± 6.8	110.0 ± 6.4	94.6 ± 5.8	84.8 ± 5.3	307.0 ± 17.6	307.0 ± 17.8
20	168.0 ± 11.3	171.0 ± 11.2	165.0 ± 9.4	165.0 ± 9.6	108.0 ± 6.4	109.0 ± 6.3	85.0 ± 4.9	85.1 ± 4.9	309.0 ± 17.8	309.0 ± 17.7
30	170.0 ± 11.2	170.0 ± 10.9	161.0 ± 9.2	162.0 ± 9.2	109.0 ± 6.5	109.0 ± 6.4	84.4 ± 4.8	84.6 ± 5.1	309.0 ± 17.6	309.0 ± 17.6
40	170.0 ± 11.1	170.0 ± 11.0	$16\overline{3.0 \pm 9.3}$	$16\overline{4.0 \pm 9.4}$	108.0 ± 6.5	108.0 ± 6.3	84.2 ± 5.1	84.4 ± 4.8	$31\overline{1.0 \pm 18.0}$	$31\overline{1.0 \pm 18.0}$

часов.

§ 3.3.4. Анализ экспериментальных результатов

Таблица 3.13 демонстрирует результаты измеренной удельной активность после выдержки (S6.B24), когда наступило вековое равновесие между радием и его дочерними продуктами распада.

Согласно Таблице 3.13, удельные активности ²²⁶Ra, ²³²Th и ⁴⁰K в пробах лежат в пределах 26.6 \leftrightarrow 104; 23.5 \leftrightarrow 88.2 и 265.9 \leftrightarrow 1069 Бк/кг соответственно. Как было отмечено, радиационная безопасность строительных материалов оценивается с помощью Ra_{eq}, значения которой для наших проб лежит в пределах 88 \leftrightarrow 315 Бк/кг. Минимальное значение удельной активности ²²⁶Ra было в пробе красного песка (26.6 Бк/кг); ²³²Th в пробе бетонных кубиков (23.5 Бк/кг) и ⁴⁰K в пробе щебня (265.9 Бк/кг). Максимальные значения ²²⁶Ra, ²³²Th и ⁴⁰K в пробе щебня (265.9 Бк/кг). Максимальные значения ²²⁶Ra, ²³²Th и ⁴⁰K наблюдались в пробе серого гранита и составили 104 Бк/кг, 88.2 Бк/кг и 1069 Бк/кг.

И наконец, минимальные и максимальные значения *Ra_{eq}* были 88 Бк/кг and 315 Бк/кг для проб красного крупного песка и серого гранита. Значения Ra_{eq} для всех проб ниже максимально допустимого уровня 370 Бк/кг [21,51].

Таблица 3.13

Удельные активности ЕРН и удельная эффективная активность измеренных проб после 40 дневной выдержки (10 периодов полураспада). Время измерения проб и фона 6 и 24 ч соответственно.

#	Проба	Удель	ная активнос	Удельная эффективная	
				активность	
		²²⁶ Ra	²³² Th	⁴⁰ K	Raeq (Бк/кг)
1	Красный песок	26.6 ± 2.6	41.3 ± 4.1	1043.2 ± 100	174.0 ± 11.1
2	Керамический	58.6 ± 6.8	42.6 ± 4.2	601.1 ± 56.0	168.0 ± 10.1
3	Щебень	40.6 ± 4.5	36.6 ± 3.5	265.9 ± 26.0	112.0 ± 6.8
4	Бетонные	27.0 ± 3.0	23.5 ± 2.3	339.1 ± 34.0	88.0 ± 5.2
5	Серый гранит	104 ± 10	88.2 ± 8.8	1069.0 ± 110.0	315.0 ± 18.0

Применение поправочного коэффициента к удельной активности радия показано в Таблице 3.14. Коэффициенты k=1.3 (полученный ранее) применен к значениям A_0 (в Таблице столбец обозначено как $k^* A_0$). Далее значения $k^* A_0$ сравнивались с значениями A_t . Разница (D) между $k^* A_0$ и A_t рассчитывается по следующей формуле:

$$D = \frac{A_t - k \cdot A_0}{A_t} \cdot 100 \tag{3.14}$$

Аналогично, разница для $Ra_{eq}(D_{Ra(eq)})$:

$$D_{Ra(eq)} = \frac{Ra_{eq}(t = 40 \, days) - Ra_{eq}(k = 1.3)}{Ra_{eq}(t = 40 \, days)} \cdot 100$$
(3.15)

Разница между значением Ra_{eq} после 40 дневной выдержки (Ra_{eq} (t=40 days)) и значениями, полученными с помощью поправочного коэффициента k=1.3 не превосходит 10% и находится в интервале 0.68 \leftrightarrow 9.32%. Минимальная разница наблюдалась для пробы красного песка (0.68%), в то время как максимальная для бетонных кубиков (9.32%). Для пробы серого гранита, для которого максимальный рост активности радия составил 22%, разница между корректированной активностью и активностью после выдержки составила всего 1.1%. Применение поправочного коэффициента позволяет проводить оценку радиационной безопасности строительных материалов в тот же день. Следует отметить, что в случае получения значения $Ra_{eq}>330$ Бк/кг после применения поправочного коэффициента к значению радия, требуется проведение более тщательных измерений.

Таблица 3.14

Применение поправочного коэффициента (k). (A₀) – удельная активность радия до выдержки, k*A₀- значения удельной активности, рассчитанные с помощью k, (A_t) – удельная активность радия, измеренная после 40 дневной выдержки, Ra_{eq}

(t=0) – значения удельной эффективной активности до выдержки, Ra_{eq} (k=1.3)- удельная эффективная активность, рассчитанная с помощью k и Ra_{eq} (t=40 days) – значения удельной эффективной активности после 40 дневной выдержки.

#	Проба	Удельная активность (Бк/кг)			Удельная эффективная активность (Бк/кг)		
		A_0	k^*A_0	A_t	$Ra_{eq}(t=0)$	$Ra_{eq} (k=1.3)$	<i>Ra_{eq} (t=40 дней)</i>
1	Красный песок	21.3 ± 2.8	27.7±3.6	26.6 ± 2.6	169.0 ± 11.1	175.4±11.2	174.0 ± 11.1
2	Керамический кирпич	54.5 ± 6.7	70.9 ± 8.7	58.6 ± 6.8	164.0 ± 10.1	180.0±11.5	168.0 ± 10.1
3	Щебень	36.6 ± 5.0	47.6±6.5	40.6 ± 4.5	111.0 ± 7.4	121.6±8.5	112.0 ± 6.8
4	Бетонные кубики	26.5 ± 4.5	34.5±5.9	27.0 ± 3.0	88.3 ± 6.4	96.3±7.4	88.0 ± 5.2
5	Серый гранит	84.6 ± 8.4	110±10.9	104 ± 10	293.0 ± 17.0	318.3±18.4	315.0 ± 18.0

Полученные результаты указывают на достаточность проведения измерений длительностью 1 час в 1 литровой геометрии Маринелли, что позволяет значительно уменьшить время измерения и стоимость проведения анализов. Для учета возможного нарушения радиоактивного равновесия между радием и радоном при измерениях без выдержки проб достаточно применять поправочный коэффициент равный 1,3 к значению A_{Ra} в формуле (3.3):

$$Ra_{ea} = 1.3A_{Ra} + 1.3A_{Th} + 0.09A_{K} \tag{3.16}$$

Таким образом, использование поправочного коэффициента позволяет сократить время анализа проб до 3 часов вместо нескольких недель. Это в свою очередь, дает возможность проводить быструю оценку радиационной безопасности строительных материалов.

Следует отметить, что обычно производители не используют материалы с повышенными уровнями естественной радиоактивности и поэтому в большинстве случаев значения *Ra_{eq}* гораздо меньше норматива 370 Бк/кг.

Большой объем статистических данных о диапазоне возможного нарушения радиоактивного равновесия между радием и его дочерними продуктами в пробах строительных материалов в различных регионах мира могли бы позволить уточнить значение поправочного коэффициента, и выяснить его применимость к одному или другому типу строительных материалов для их быстрой оценки на радиационную безопасность.

Экспериментальные значения суммарной удельной эффективной активности A_{eff} (Ra_{eq)} строительных материалов некоторых регионов Узбекистана

С целью апробирование предлагаемой нами методики экспресс оценки радиационной безопасности строительных материалов были проанализированы 304 пробы 16 основных видов строительных материалов и производимых из них изделий, отобранных в период с 2016 по 2018 годы в 9 регионах Узбекистана (таблица 3.15).

Таблица 3.15

Виды отобранных проб строительных материалов и изделий из регионов

N⁰	Вид / наименование проб	Кол-во проб	Районы отбора проб	
1	Алебастр	2	Андижанская область	
2	Асфальт (асфальтобетонная смесь)	10	Андижанская, Самаркандская, Сурхандарьинская области	
3	Бетонные изделия (блоки, плиты тротуарные)	30	Джизакская, Самаркандская, Сурхандарьинская области	
4	Гипс	7	Андижанская, Самаркандская, Сурхандарьинская области	
5	Кирпич, сырье кирпичное	100	Андижанская, Джизакская, Кашкадарьинская, Навоийская, Самаркандская, Сурхандарьинская, Сырдарьинская, Ташкентская области, Каракалпакстан	
6	Мел молотый из мрамора	6	Кашкадарьинская, Самаркандская, Ташкентская области	
7	Минеральный порошок	3	Джизакская, Ташкентская области	
8	Мрамор и изделия из него (камни, плитка, блоки)	8	Самаркандская область	
9	Песок разный	42	Андижанская, Джизакская, Самаркандская, Сурхандарьинская, Ташкентская области	
10	Песчано-гравийные смеси	15	Андижанская, Джизакская, Кашкадарьинская,Самаркандская, Сырдарьинская области и Каракалпакия	
11	Плитка тротуарная	4	Андижанская, Ташкентская области	
12	Смеси шпаклевочные строительные разные	5	Самаркандская область	
13	Цемент	5	Андижанская, Навоийская, Самаркандская области	
14	Шлакоблоки	3	Андижанская область	
15	Щебень из гравия	60	Андижанская, Джизакская, Кашкадарьинская, Самаркандская, Сурхандарьинская, Ташкентская области и Каракалпакия	
16	Щебень из мрамора и горных пород	4	Джизакская, Самаркандская области	

Узбекистана

Результаты измерений сведены в таблицу 3.16, в которой приведены максимальные, минимальные и средние значения суммарной удельной эффективной активности анализированных проб строительных материалов и изделий.

Максимальные (Aeff_max), минимальные (Aeff_min) и средние (Aeff_av) значения удельной эффективной активности проб строительных материалов

Мо	Pue / non concerning anos	A _{eff} _min	A _{eff} _max	A _{eff} _av
JNG	Бид / наименование проо	Бк/кг	Бк/кг	Бк/кг
1	Алебастр	10,6	34,7	22,7
2	Асфальт (асфальтобетонная смесь)	65,4	169,4	117,4
3	Бетонные изделия (блоки, плиты тротуарные)	58,9	143,0	101,0
4	Гипс	3,1	25,5	14,3
5	Кирпич, сырье кирпичное глинистое	54,6	251,4	153,0
6	Мел молотый из мрамора	4,8	22,0	13,4
7	Минеральный порошок	27,0	116,5	71,8
8	Мрамор и изделия из него (камни, плитка, блоки)	3,2	13,0	8,1
9	Песок разный	23,6	185,3	104,5
10	Песчано-гравийные смеси	35,8	125,0	80,4
11	Плитка тротуарная	39,6	157,1	98,4
12	Смеси шпаклевочные строительные разные	12,3	80,9	46,6
13	Цемент	44,8	84,6	64,7
14	Шлакоблоки	54,3	83,0	68,7
15	Щебень из гравия	17,2	180,7	99,0
16	Щебень из мрамора и горных пород	3,3	14,1	8,7

и изделий

Для наглядности полученные результаты показаны также на гистограмме (рис. 3.12).

Максимальные значения суммарной удельной эффективной активности исследованных строительных материалов и изделий меньше уровня 370 Бк/кг (1 класс строительных материалов), поэтому они могут быть безопасно использованы при строительстве любых типов зданий.

Точные измерения с долгодневными выдержками, многочасовыми измерениями проб и фона и применение специальных методов обработки спектров можно проводить в случаях:

- когда *Ra_{eq}*+ погрешность близки к значению 370 Бк/кг;
- при использовании промышленных отходов в производстве стройматериалов (например, фосфогипс, шлаки металлургических производств и т.д.);
- при импорте строительных материалов.

§ 3.4 Выводы к главе 3

Проведённые исследования показали, что сцинтилляционные детекторы несмотря на низкое энергетическое разрешение, могут быть успешно использованы в исследованиях проб объектов окружающей среды с низким уровнем радиоактивности при использовании методики разложения экспериментального спектра на составляющие спектры генетически связанных отдельных PH, а именно:

- продемонстрирована возможность и целесообразность использования разработанного метода в исследованиях радиоактивности фоновых районов природной среды, в том числе для проведения OBOC;
- полученные с применением метода разложения экспериментальные данные о пространственном распределении ¹³⁷Cs указывают на его однозначную связь с процессами переноса почв, что в свою очередь подтверждает возможность применения гамма-сцинтилляционного метода для количественной оценки степени эрозии почв;
- использование поправочного коэффициента для учета возможного нарушения радиоактивного равновесия между ²²⁶Ra и его ДПР в строительных материалах дает возможность в несколько раз сократить время анализа, что позволяет осуществлять экспресс-измерение большого количества образцов.

ЗАКЛЮЧЕНИЕ

На основе проведенных исследований по диссертации на соискание ученой степени доктора философии (PhD) по физико-математическим наукам на тему «Исследование низких активностей объектов природной среды. Новый подход в гамма спектрометрии» можно сделать следующие выводы.

• Предложен новый подход в исследованиях низких активностей радионуклидов в объектах природной среды, основанный на разложении экспериментального спектра на составляющие, связанные с цепочками распада 226 Ra, 222 Rn и 228 Ac и распадом 235 U, 40 K, 137 Cs и 7 Be;

• Показано, что новый подход позволяет существенно снизить статистические погрешности в установлении содержаний радионуклидов (до 1%), устранить проблему интерферирующих гамма линий и корректно учесть влияние комптоновского вклада в пики полного поглощения. Предложенный подход имеет универсальный характер и может быть применен для полупроводниковых, в том числе HPGe спектрометров, для идентификации интерферирующих гамма линий, например, ²³⁵U и ²²⁶Ra;

• Продемонстрировано существенное расширение возможности применения сцинтилляционных гамма спектрометров в решении конкретных прикладных задач при измерении низких активностей объектов природной среды;

 Определены фоновые содержания радионуклидов в природных объектах обширного района Нурата и показана предпочтительность использования сцинтилляционных гамма-спектрометров с применением разработанного нами подхода при проведении радиоэкологического мониторинга территорий;

• Установлена зависимость интенсивностей средне- и краткосрочных почвенных процессов эрозии и седиментации, труднодоступных в исследованиях традиционными методами почвоведения, от концентраций выпадающих радионуклидов на отдельных участках местности, что открывает

108
перспективы применения сцинтилляционных спектрометров в разработке количественных методов оценки степени эрозии почв;

• Определен диапазон нарушения радиоактивного равновесия между ²²⁶Ra и его дочерними продуктами распада для 304 проб 16 видов строительных материалов, отобранных в 9 регионах Узбекистана;

• Предложена методика экспресс оценки радиационный безопасности строительных материалов, основанный на учете возможного нарушения радиоактивного равновесия между ²²⁶Ra и его дочерними продуктами распада. Метод позволяет на порядок сократить время анализа, осуществлять массовые экспресс-анализы образцов строительных материалов и снизить издержки предприятий строительной индустрии.

109

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- Абрамов А.И., Казанский Ю.А., Матусевич Е.С. Основы экспериментальных методов ядерной физики // М. Энергоатомиздат. 1985. -. 488 с.
- Wikipedia. [Электронный ресурс] [Электронный ресурс]. 2006. URL: https://upload.wikimedia.org/wikipedia/commons/1/18/Photomultipliertube_s cheme_rus.svg.
- 3. Crouthamel C.E., Adams F., Dams R. APPLIED GAMMA-RAY SPECTROMETRY BY. 2nd edition -Elsevier, 2013. 772p.
- Brooks F.D. Development of organic scintillators // Nucl. Instruments Methods. 1979. - V. 162, - № 1–3. - pp. 477–505.
- Birks J.B., Firk F.W.K. The Theory and Practice of Scintillation Counting // Phys. Today, 1965. -V. 18, - № 8. - p. 60.
- Knoll G.F. Radiation detection and measurement. John Wiley & Sons, 2010.
 864 p.
- 7. Weber M.J. Inorganic scintillators: Today and tomorrow // J. Lumin. 2002.
 V. 100, № 1–4. pp. 35–45.
- Novotny R. Inorganic scintillators A basic material for instrumentation in physics // Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., 2005. - V. 537, - № 1-2 SPEC. ISS. pp. 1–5.
- Lecoq P., Chao A. Inorganic Scintillators for Detector Systems // Inorganic Scintillators for Detector Systems. 2006, - 408 p.
- Bezuidenhout J. Measuring naturally occurring uranium in soil and minerals by analysing the 352 keV gamma-ray peak of ²¹⁴Pb using a NaI(Tl)-detector // Appl. Radiat. Isot. - Elsevier, 2013. - V. 80. – pp. 1–6.
- Hung N.Q. et.al. Intercomparison NaI(Tl) and HPGe spectrometry to studies of natural radioactivity on geological samples // J. Environ. Radioact. - Elsevier Ltd, 2016. - V. 164. - pp. 197–201.

- Perez-Andujar A., Pibida L. Performance of CdTe, HPGe and NaI(Tl) detectors for radioactivity measurements // Appl. Radiat. Isot., 2004. -V. 60, - № 1. - pp. 41–47.
- Eberth J., Simpson J. From Ge(Li) detectors to gamma-ray tracking arrays-50 years of gamma spectroscopy with germanium detectors // Prog. Part. Nucl. Phys, 2008. V. 60, № 2. pp. 283–337.
- Sanders C.J. et.al. Examining 239+240Pu, 210Pb and historical events to determine carbon, nitrogen and phosphorus burial in mangrove sediments of Moreton Bay, Australia // J. Environ. Radioact. - Elsevier Ltd, - 2016. -V. 151. - pp. 623–629.
- Carvalho M.C., Sanders C.J., Holloway C. Auto-HPGe, an autosampler for gamma-ray spectroscopy using high-purity germanium (HPGe) detectors and heavy shields // HardwareX. - 2018. - V. 4.
- 16. Gilmore G.R. Practical Gamma-ray Spectrometry, 2008, 387 p.
- Upp D.L., Keyser R.M., Twomey T.R. New cooling methods for HPGE detectors and associated electronics // J. Radioanal. Nucl. Chem. 2005. V. 264, № 1. pp. 121–126.
- IAEA. Safeguards techniques and equipment. International Nuclear Verification Series. - Vienna, - 2011. - 162 p.
- International Atomic Energy Agency. Guidelines for Radioelement Mapping Using Gamma Ray Spectrometry // IAEA-TECDOC-1363. 2003.
- Kovler K. et.al. Can scintillation detectors with low spectral resolution accurately determine radionuclides content of building materials? // Appl. Radiat. Isot. - Elsevier, - 2013. - V. 77. - pp. 76–83.
- GOST-30108-94. Building materials and elements. Determination of specific activity of natural radioactive nuclei. Interstate Standard, Russian Federation. 1994.
- STUK. (Radiation and Nuclear Safety Authority) The radioactivity of building materials and ash. Regulatory Guides on Radiation Safety. (ST Guides) ST 12.2. – Finland, 2003.

- Clark H.M., Neil D.E. A Table of Radionuclides Arranged According to Half-Life. - Rensselaer Polytechnic Inst., Troy, NY, 1955.
- 24. Eisenbud M., Gesell T.F. Environmental radioactivity from natural, industrial and military sources: from natural, industrial and military sources. Elsevier, 1997.
- Certificate N110/905. Russian Research Institute of Metrology named after D.Mendeleyev. 1995.
- 26. Lederer C.M., Shirley V.S. Tables of isotopes. New York, 1978.
- Muminov I.T. et.al. Atmospheric fallouts and weather phenomena // Abstracts of the fifth international conference on modern problems of nuclear physics. -Tashkent (Uzbekistan), - 2003. - p. 395.
- Моисеев А.А. Цезий-137. Окружающая среда. Человек. Москва: Энергоатомиздат, - 1985. – 121 с.
- Машрапов Р. Орографическая характеристика и некоторые особенности рельефа Нуратинских гор // Известия Узбекистанского географического общества. - 1968. - Т. 11, - с.17-19.
- Виноградов А.В., Мамедов Э.Д. Первобытный Лявлякан: этапы древнейшего заселения и освоения Внутренних Кызылкумов.
 Издательство Наука, Главная редакция восточной литературы, - 1975. -288 с.
- N.E. G. The use of GIS and simulation models for studies and decision-making in basins of Central Asian rivers // Book of abstracts. Humboldt International Conference. - 2004. – 25 p.
- 32. Taylor S.R. Abundance of chemical elements in the continental crust: a new table. Geochimica et Cosmochimica Acta. 1964. vol. 28. pp. 1273-1285.
- Chepil W.S., Woodruff N.P. The physics of wind erosion and its control // Adv. Agrcnomy. - 1963. - V. 15. - pp. 211–302.
- 34. Stroosnijder L. Measurement of erosion: is it possible? // Catena. Elsevier, 2005. V. 64, № 2–3. -pp. 162–173.

- 35. Amundson R. et.al. Soil and human security in the 21st century // Science 2015. V. 348, № 6235. pp. 1261071.
- 36. FAO. GLADIS Global land data information system. 2015.
- 37. Foley J. Living by the lessons of the planet // Science. 2017. V. 356, № 6335. pp. 251–252.
- Keesstra S.D. et.al. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals // Soil. 2016. № 2. pp. 111–128.
- 39. FAO/IAEA. Use of 137 Cs for Soil Erosion Assessment. 2017. 64 p.
- 40. Tan Z. et.al.. Modeling sediment yield in land surface and earth system models: Model comparison, development, and evaluation // J. Adv. Model. Earth Syst.
 - Wiley Online Library, - 2018. - V. 10, - № 9. - pp. 2192–2213.
- Laflen J.M., Lane L.J., Foster G.R. WEPP: A new generation of erosion prediction technology // J. Soil Water Conserv. - Soil and Water Conservation Society, - 1991. - V. 46, - № 1. - pp. 34–38.
- Wischmeier W.H., Smith D.D. Predicting rainfall erosion losses: a guide to conservation planning. Department of Agriculture, Science and Education Administration, - 1978. - № 537.
- 43. Flanagan D.C., Gilley J.E., Franti T.G. Water Erosion Prediction Project (WEPP): Development history, model capabilities, and future enhancements // Trans. ASABE. American Society of Agricultural and Biological Engineers, 2007. V. 50, № 5. pp. 1603–1612.
- 44. Alewell C. et.al. Using the USLE: Chances, challenges and limitations of soil erosion modelling // Int. soil water Conserv. Res. Elsevier, 2019. V. 7, № 3. pp. 203–225.
- 45. Титаева Н.А. Ядерная геохимия. Учебник. Московский государственный университет имени М.В. Ломоносова, 2000.
- 46. Ritchie J.C., McHenry J.R. Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: A review

// J. Environ. Qual. - Wiley Online Library, - 1990. - V. 19, - № 2. - pp. 215–233.

- 47. Mabit L., Benmansour M., Walling D.E. Comparative advantages and limitations of the fallout radionuclides ¹³⁷Cs, ²¹⁰Pbex and ⁷Be for assessing soil erosion and sedimentation // J. Environ. Radioact. Elsevier, 2008. V. 99, N
 ^o 12. pp. 1799–1807.
- Goossens D., Offer Z.Y. Aeolian dust erosion on different types of hills in a rocky desert: wind tunnel simulations and field measurements // J. Arid Environ. Elsevier, 1997. V. 37, № 2. pp. 209–229.
- 49. Павлоцкая Ф.И. Миграция радиоактивных продуктов глобальных выпадений в почвах // М. Атомиздат. 1974. Т. 216. с. 17.
- 50. WNA. [WWW document] [Электронный pecypc]. 2015. URL: http://www.worldnuclear.org/information-library/safety-andsecurity/radiation-and-health/naturally-occurring-radioactive-materialsnorm.aspx.
- 51. OECD. Organisation for Economic Cooperation and Development. Exposure to radiation from natural radioactivity in building materials. Report by a Group of Experts of the OECD Nuclear Energy Agency, OECD. 1979.
- 52. Beretka J., Mathew P.J. Natural radioactivity of Australian building materials, waste and by-products // Health Phys. 1985. V. 48, № 1. pp. 87–95.
- 53. Krisyuk É.M., Parkhomenko V.I. Radiation background in living accommodations // Sov. At. Energy. 1984. V. 57, № 1. pp. 475–482.
- Bajoga A.D. et.al. Radioactive investigation of NORM samples from Southern Kuwait soil using high-resolution gamma-ray spectroscopy // Radiat. Phys. Chem. - Elsevier, - 2015. - V. 116. - pp. 305–311.
- 55. Iqbal M., Tufail M., Mirza S.M. Measurement of natural radioactivity in marble found in Pakistan using a NaI(Tl) gamma-ray spectrometer // J. Environ. Radioact. 2000. V. 51, № 2. pp. 255–265.

- 56. Uosif M.A.M. Estimation of Radiological Hazards of Some Egyptian Building Materials Due to Natural Radioactivity // Int. J. u- e- Serv. Sci. Technol. - 2014.
 - V. 7, - № 2. - pp. 63–76.
- 57. Vanasundari K. et.al. Available online at Indian Journal of Advances in Chemical Science Measurement of Natural Radioactivity in Building Material Used in Chengam of Tiruvannamalai District, Tamilnadu by Gamma-Ray Spectrometry // Indian J. Adv. Chem. Sci. - 2012. - pp. 22–27.
- 58. European Parliament. Council Directive 2013/59/Euratom of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom a // Off J Eur Commun L13. 2014. № December 2013. pp. 1–73.
- IAEA. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards. General Safety Requirements Part 3. - 2014. - 471 p.
- Trevisi R. et.al. Natural radioactivity in building materials in the European Union: A database and an estimate of radiological significance // J. Environ. Radioact. - Elsevier Ltd, - 2012. - V. 105. - pp. 11–20.
- Stals M. et.al. The use of portable equipment for the activity concentration index determination of building materials: Method validation and survey of building materials on the Belgian market // J. Environ. Radioact. - Elsevier Ltd, - 2014. - V. 127. - pp. 56–63.
- Hegedűs M. et.al. Radiological characterization of clay mixed red mud in particular as regards its leaching features // J. Environ. Radioact. - 2016. - V. 162–163. - pp. 1–7.
- 63. Э.М. Крысюк и др. Исследование и нормирование строительных материалов // Радиационная гигиена. 1971. № 4. с. 109–111.
- 64. Institute S.R.P. SSI Report: 99:18. Radon legislation and national guidelines. Swedish Radiation Protection Inst.
- 65. СанПиН №0193-06 «Нормы радиационной безопасности (НРБ-2006) и основные санитарные правила обеспечения радиационной безопасности

(ОСПОРБ-2006)». Утверждены главным государственным санитарным врачом Республики Узбекистан. - Ташкент, - 2006.

- IAEA International basic safety standards for protection against ionizing radiation and for the safety of radiation sources. Safety series 115. - Vienna, -1996.
- 67. Республиканскиестроительныенормы. УзРСН-94. Ташкент, 1994.
- 68. European Commission. Radiological protection principles concerning the natural radioactivity of building materials // Radiat. Prot. 1999. V. 112.
- 69. Taskin H. et.al. Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey // J. Environ. Radioact. Elsevier, 2009. V. 100, № 1. pp. 49–53.
- 70. UNSCEAR. Sources and Effects of Ionizing Radiation, United Nations Scientific Committee on the Effect of Atomic Radiation Report Vol.1 to the General Assembly, with Scientific Annexes. // United Nations Sales Publ. United Nations, New York. 2000.
- 71. Amrani D., Tahtat M. Natural radioactivity in Algerian building materials //
 Appl. Radiat. Isot. Elsevier, 2001. V. 54, № 4. pp. 687–689.
- 72. Chowdhury M., Alam M., Ahmed A. Concentration of radionuclides in building and ceramic materials of Bangladesh and evaluation of radiation hazard // J. Radioanal. Nucl. Chem. - Akadémiai Kiadó, co-published with Springer Science, - 1998. - V. 231, - № 1–2. - pp. 117-123a.
- 73. Malanca A. et.al. Natural radioactivity in building materials from the Brazilian state of Espirito Santo // Appl. Radiat. Isot. Elsevier, 1995. V. 46, № 12.
 pp. 1387–1392.
- 74. Sharaf M. et.al. Natural radioactivity and radon exhalation rates in building materials used in Egypt // Radiat. Meas. - Elsevier, - 1999. - V. 31, - № 1–6. pp. 491–495.
- 75. Stoulos S., Manolopoulou M., Papastefanou C. Assessment of natural radiation exposure and radon exhalation from building materials in Greece // J. Environ. Radioact. Elsevier, 2003. V. 69, № 3. pp. 225–240.

- 76. Kumar A. et.al. Natural activities of ²³⁸U, ²³²Th and ⁴⁰K in some Indian building materials // Radiat. Meas. Elsevier, 2003. V. 36, № 1–6. pp. 465–469.
- 77. Kumar V., Ramachandran T. V, Prasad R. Natural radioactivity of Indian building materials and by-products // Appl. Radiat. Isot. Elsevier, 1999. V. 51, № 1. pp. 93–96.
- Bou-Rabee F., Bem H. Natural radioactivity in building materials utilized in the state of Kuwait // J. Radioanal. Nucl. Chem. - Akadémiai Kiadó, copublished with Springer Science, - 1996. - V. 213, - № 2. - pp. 143–149.
- 79. Ibrahim N. Natural activities of ²³⁸U, ²³²Th and ⁴⁰K in building materials // J. Environ. Radioact. Elsevier, 1999. V. 43, № 3. pp. 255–258.
- 80. Matiullah N.A., Hussein A.J.A. Natural radioactivity in Jordanian soil and building materials and the associated radiation hazards // J. Environ. Radioact.
 Elsevier, 1998. V. 39, № 1. pp. 9–22.
- Hayumbu P. et.al. Natural radioactivity in Zambian building materials collected from Lusaka // J. Radioanal. Nucl. Chem. - Akadémiai Kiadó, co-published with Springer Science, - 1995. - V. 199, - № 3. - pp. 229–238.
- 82. Ngachin M. et.al.. Assessment of natural radioactivity and associated radiation hazards in some Cameroonian building materials // Radiat. Meas. Elsevier, 2007. V. 42, № 1. pp. 61–67.
- Yu K.N. et.al. The assessment of the natural radiation dose committed to the Hong Kong people // J. Environ. Radioact. - Elsevier, - 1992. - V. 17, - № 1. pp. 31–48.
- Bilbao Alfonso A. V et.al. Programs for a study of the radiation protection dose received by the population in possibly high natural radiation zones in the Republic of Cuba. 1993.
- M Aliabadi. et.al. Natural radioactivity of building materials in an area with high natural radiation in Iran // High Levels Nat. Radiation, - Proc. Int. Conf. Ramsar. – 1990, pp.249-257.
- Mollah A.S. et.al. The natural radioactivity of some building materials used in Bangladesh // Health Phys. 1986. V. 50, № 6. pp. 849–851.

- 87. Ettenhuber E., Lehmann R. The collective dose equivalent due to the naturally occurring radionuclides in building materials in the German Democratic Republic. Part 1: external exposure // Health Phys. LWW, 1986. V. 50, № 1. pp. 49–56.
- Ng C.Y., Leung J.K.C., Tso M.Y.W. Modelling exposure to naturally occurring radionuclides in building materials // Radiat. Prot. Dosimetry. - Oxford University Press, 1995. - V. 59, - № 1. - pp. 43–48.
- Mustapha A.O. et.al. Natural radioactivity in some building materials in Kenya and the contributions to the indoor external doses // Radiat. Prot. Dosimetry. -Oxford University Press, - 1997. - V. 71, - № 1. - pp. 65–69.
- 90. Rizzo S. et.al. Gamma activity and geochemical features of building materials: estimation of gamma dose rate and indoor radon levels in Sicily // Appl. Radiat. Isot. - Elsevier, - 2001. - V. 55, - № 2. - pp. 259–265.
- 91. El-Taher A. Gamma spectroscopic analysis and associated radiation hazards of building materials used in Egypt // Radiat. Prot. Dosimetry. - Oxford University Press, - 2010. - V. 138, - № 2. - pp. 166–173.
- 92. El-Taher A. Assessment of natural radioactivity levels and radiation hazards for building materials used in Qassim area, Saudi Arabia // Rom. J. Phys. 2012. V. 57, № 3–4. pp. 726–735.
- 93. [Электронный ресурс] RADEK. MD-198 Multichannel Analyzer 2008. http://www.radek.ru/product/Komplektuyuschie-izdeliya-i-bloki/78/.
- 94. Certificate 610/09. Volumetric sources (Ra-226, Th-232, K-40 and Cs-137) in 1 liter Marinelli geometry. Federal State Unitary Enterprise «D.I.Mendeleyev Institute for Metrology» (VNIIM). - Russian Federation. - 2009.
- 95. Control Sources. Manufactured by Radium Institute of Khlopin (www.khlopin.ru). 2009.
- 96. Finkel F. ASW [Computer Software] http://www.radek.ru/en/product/Software/40/. - 2010.
- 97. Rabinovich S.G. Pogreshnosti izmereniy [Measurement errors and uncertainties]. Energiya. Moscow. 262 p., 1978. 262 c.

- 98. Azimov A.N. et.al. Gamma-spectrometric determination of natural radionuclides and ¹³⁷Cs concentrations in environmental samples. The improved scintillation technique // Radiat. Meas. - 2008. - V. 43, - № 1. - pp. 66–71.
- 99. GOST-R-8.736-2011. State system for ensuring the uniformity of measurements. Multiple direct measurements. Methods of measurement results processing. Main principles // State Stand. Russ. Fed. 2013. 21 p.
- 100. ISO. Accuracy (trueness and precision) of measurement methods and results // Int. Stand. - 1994.

СПИСОК УСЛОВНЫХ ОБОЗНАЧЕНИЙ, СИМВОЛОВ И ТЕРМИНОВ

Бк	Беккерель (Бк), системная единица измерения
	радиоактивности. Равна одному распаду в секунду
HPGe	Детектор из сверхчистого германия
NaI(Tl)	Детектор на основе кристалла натрий йод, активированного
	таллием
АЦП	Амплитудно-цифровой преобразователь
ППД	Полупроводниковый детектор
PH	Радионуклид
EPH	Естественные радионуклиды
TPH	Техногенные радионуклиды
КРН	Космогенные радионуклиды
ΠΠΠ	Пик полного поглощения
Зв	Зиверт - единица эквивалентной дозы
ОМАСН	Объемные меры активности специального назначения
МДА	Минимальная детектируемая активность
МЭД	Мощность амбиентного эквивалента дозы гамма-излучения
$A_{eff}(Ra_{eq})$	Суммарная удельная эффективная активность природных
	радионуклидов 226 Ra, 232 Th и 40 K
ДПР	Дочерние продукты распада радона
КТ	Контрольная точка. Место, в котором производится отбор
	проб или измерение величины ионизирующего излучения
OBOC	Оценка воздействия на окружающую среду
АЭС	Атомная электростанция
BO3 (WHO)	Всемирная организация здравоохранения (World Health
	Organization
МАГАТЭ	Международное агентство по атомной энергии
(IAEA)	
ЕК	Европейская Комиссия

НРБ	Нормы радиационной безопасности
ООН	Организация объединенных наций
НКДАР	Научный Комитетпо Действию Атомной Радиации ООН
(UNSCEAR)	(United Nations Scientific Committee on Effects of Atomic
	Radiation)
СанПиН	Санитарные правила и нормы
ЦГСЭН	Центр государственного санитарно-эпидемиологического
	надзора