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INTRODUCTION

Topicality and demand of the subject of dissertation. Currently, a

lot of efforts are made to understand the structure of neutron rich halo nuclei

like 6He, 11Li, 11Be, 14Be, 19C, 31Ne. These nuclei have special properties such as

small binding energies and the extended one- and two-neutron low-momentum

orbitals (l=0,1). Usually, these nuclei are studied in the core plus few neutrons

model. Additionally, no any two-body subsystem of the three-body halo nuclei

6He, 11Li, and 14Be is bound, a property of the Borromean system. In addition

to the static properties, like energies and charge radii, the beta-decay and elec-

tromagnetic transition processes of these nuclei to two-body and three-body

continuum channels are of special interest. These processes yield useful infor-

mation on the internal structure and halo properties of the nuclei, since the

transitions occur namely in the halo parts. In addition, there are experimen-

tal data on the beta-decay processes of the 6He and 11Li halo nuclei into the

two-body deuteron continuum channels, which need a deep theoretical analysis.

The study of the beta-decay processes of the halo nuclei 11Be, 19C and 31Ne to

the two body proton plus core continuum channels can yield new properties of

these systems in addition to the static characteristics.

Among the halo nuclei a special place belongs to the 11Li nucleus. Unlike

other nuclei, it can decay additionally into the 9Li+proton+neutron three-body

continuum channel. This is the most complicated process and the theoretical

model should give useful information on the process, as well as on the three-

body structure of the 11Li halo nucleus.

The first excited state of the 6Li nucleus is the isobar analog state of the 6He

halo nucleus. Therefore the M1-transition process of this state to the deuteron

continuum channel allows one to obtain information on its halo properties,
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similar to the properties of the 6He nucleus. The obtained estimations for the

width of the M1-transition can be compared with the existing experimental

data. The process additionally can be used when studying the parity violation

effects in the strong interaction.

The nuclear-nuclear interaction models, containing forbidden states in low-

est waves, have been proposed long time ago, in the seventies of the XX-th

century for an adequate account of the Pauli principle as an alternative to the

potential models with a repulsive core at short distances. They have a mi-

croscopic background, in other words, are based on the nucleonic degrees of

freedom. However, the role of these forbidden states in the nuclear structure

has not been properly studied until now. This question is of special interest for

nuclei containing several alpha clusters. The exclusion is the Moscow nucleon-

nucleon potential model with forbidden states in lowest waves: its properties

in the three-body nuclei have been studied in details. On the other hand, a

role of forbidden states in the Moscow model is different and it is connected

with the quark structure of the nucleon. But in light nuclei containing several

nuclear clusters, the models with forbidden states are introduced exclusively for

the adequate account of the Pauli principle. They have got a special actuality

in view of the discovery of the halo structure of some light nuclei.

The nuclei which consist of several alpha clusters play an important role in

astrophysics. Although the two alpha particles are unbound, but the nuclei,

containing three (12C) and four (16O) alpha clusters, have large binding ener-

gies and belong to the group of the Borromean nuclei. For these nuclei, the

obtaining realistic wave functions for the bound, as well as continuum states,

which can be applied to the estimation of the cross-section of the astrophysical

synthesis reactions, is the most difficult problem. On the other hand, study of

the structure of these nuclei become even more actual in view of predictions of

the existence of the ”alpha-condensation”.

The topic of the dissertation is included into the list of the priority direc-
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tions of the fundamental research developed by the Academy of Sciences of the

Republic of Uzbekistan. Needs for the dissertation topic are connected with

the necessity of development of fundamental knowledge on matter structure,

nuclear forces and processes occurring in the microworld. Developed theoret-

ical models of strong interaction allow one to describe structure of nuclei and

to predict their new properties. Fundamental knowledge of nuclear structure

and nuclear forces will be a reliable basis for the development of nuclear power

which becomes basic and practically inexhaustible energy source in the near

future.

Conformity of research to priority directions of development of

science and technologies of the Republic of Uzbekistan. This work

has been carried out in accordance with development priorities of science and

technology of the Republic of Uzbekistan F2 ”Physics, Astronomy, Power en-

gineering and engineering industry”.

Review of international scientific research on dissertation subject.

Theoretical models for the structure of light nuclei are being developed in differ-

ent scientific centers of the world. The most successful models for the structure

of bound states of light nuclei are based on variational methods on Gaussian

(theoretical groups in Niigata and Kyoto, Japan and Moscow State Univer-

sity, Russia) and Lagrange mesh (theoretical group at the University Libre de

Bruxelles, Belgium) bases. They have been applied to the study of the struc-

ture of the three-body nuclei 3H, 3He, 6He, 6Li, 11Li, 9Be. The energy spectra,

root-mean square radii, electric and magnetic form factors have been estimated.

However, a theoretical study of the 12C nucleus in the 3α model does not give

satisfactory results. The bound spectrum of this nucleus obtained with the

help of the local α − α-potential with a repulsive core lays much higher than

the experimental data. At the same time the microscopical models underes-

timate the spectrum by several MeV. And the three-body calculations using

potential models with αα-forbidden states, meet big problems connected with
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the orthogonalization of the solution on forbidden states. In order to overcome

these difficulties it is necessary to examine carefully the sensitivity of the energy

spectrum of the 12C nucleus to the description of the α− α-forbidden states.

The three-body continuum structure of light nuclei is being studied through

the break-up reaction in the experiments (RIKEN, Japan), as well as by theo-

retical way on the basis of the Faddeev equation approach (theoretical group at

the Aarhus University, Denmark), the complex scaling and analytical continua-

tion methods (theoretical group at the MSU, Russia). However, these methods

have limited possibilities. In particular, the Faddeev equation approach meets

difficulties when dealing with the Coulomb forces. And the complex scaling

method, as well as the analytical continuation method can be applied only to

the resonance states.

In the past the R-matrix approach has been applied to the two-body contin-

uum problems. However, a recent application of this method in the literature to

the three-body continuum in the frame of the hyperspherical method (groups of

the Kurchatov Atomic Energy Institute, Russia and of the Copenhagen Univer-

sity, Denmark) meets serious problems due-to the extended three-body binding

potential.

As was noted above, during the last years the properties of the two-body

11Be, 19C, 31Ne and three-body 6He, 11Li, 14Be halo nuclei present a special

interest. Currently, all the above mentioned theoretical groups are being in-

terested to study the bound and continuum structure of these systems and the

electromagnetic and beta-transition processes to the continuum channels.

Degree of study of the problem. The role of forbidden states in nuclear

interactions has been studied in the 3α problem several times. But, up to

now it was impossible to separate completely the three-body allowed subspace

for this system. The obtained solutions of the Schrödinger equation for the

bound states of the 12C nucleus in the 3α model with the BFW potential with

forbidden states contain some piece of forbidden states therefore the obtained
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theoretical results for the energy spectrum are not realistic. The application

of the orthogonalising pseudopotential method for the exclusion of forbidden

states allows to find out special features of the 12C nucleus that have not been

studied in the literature.

Serious problems connected with the extended three-body effective potential

when describing the three-body continuum of halo nuclei, can be overcome in

the R-matrix approach in a combination with the propagator method. This

way allows to match the wave function with its asymptotics at large distances.

The method can be applied to the three-body continuum structure of the halo

nuclei 6He and 14Be that has not been studied in the literature.

The existing experimental data on the beta-decay processes of the halo

nuclei 6He and 11Li into the two-body continuum channels with the deuteron

emission have not been explained adequately up to now in theoretical models,

although there were several papers devoted to this problem. The theoretical

researches on the 6He beta-decay have concluded that the α − d-potentials

with forbidden states describe the experimental data better than the models

with forbidden states which have a microscopical background. Additionally,

a potential dependence of the beta-transition probability of the 11Li nucleus

into the deuteron continuum channel has not been studied, although obtained

results are somehow close to the experimental data. Also, a role of the S-wave

resonance in the 9Li+d system has not been studied for the correct description

of the experimental data.

The halo properties of the isobar-analog state 6Li(0+) have not been stud-

ied in details in the three-body model in the literature. Only some simplified

estimations have been obtained. Here one has to develop complete three-body

formalism with the extraction of analytical expressions for the matrix elements

of the M1-transition with the further numerical realization.

Also, there were no studies of the beta-decay processes of the one-neutron

halo nuclei 11Be, 19C and 31Ne to the two-body continuum channels with emis-
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sion of a proton.

As was noted above, the most complicated process is the beta-decay of the

halo nucleus 11Li into the three-body continuum channel 9Li+p+n. This process

was studied neither in theoretical works, nor in the experiment. Therefore the

theoretical analysis of the process with application of the modified Coulomb

functions allows finding out new halo properties of this nucleus.

Connection of dissertational research with the plans of scientific-

research works is reflected in next projects performed in the frame of the

State Scientific-Technical Programs on fundamental research:

N.F-2.1.33 ”Study of the multiphonon states of the vibrational nuclei” (2003-

2007);

N.FA-F2-F076+F074 ”Study of the structure of the symmetrical and neu-

tron rich nuclei in the transfer and breakup reactions” (2007-2011);

N.F2-FA-0-10117 ”Study of the formation of light elements and properties

of exotic nuclei formed in the low-energy reactions” (2011-2016).

Purpose of research is to establish special features of the potential model

of the interaction between nuclear clusters for the bound and continuum struc-

ture of light nuclei and for the description of processes with these nuclei at low

energies.

To achieve this goal the following tasks of research are formulated:

- to estimate the energy spectrum of the 12C nucleus in the 3α cluster model

and to clarify special features of the potential model with forbidden states;

- to develop the R-matrix approach in the combination with the propagator

method for the study of the three-body continuum structure of light nuclei, to

estimate three-body phases for the two-neutron halo nuclei 6He and 14Be;

- to analyze the beta-decay processes of the halo nuclei 6He and 11Li into

the α + d and 9Li+d two-body continuum channels in the three-body cluster

potential model and to clarify potential dependence of the transition probabil-

ities;
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- to study halo properties of the the isobar-analog state 6Li(0+) in the

magnetic M1-transition processes to the 6Li(1+) ground state and to the α + d

continuum in the three-body model and to study potential dependence of the

transition probabilities;

- to estimate the transition probabilities of the 11Li nucleus beta-decay to

the 9Li+p + n three-body continuum channel in the cluster potential model;

- to to estimate the transition probabilities of the beta-decay of the one-

neutron halo nuclei 11Be, 19C and 31Ne to the two-body continuum channels in

the frame of cluster potential model.

Objects of research are the bound spectrum of the 12C nucleus, transition

probabilities of the beta-decay of the halo nuclei 6He, 11Li, 11Be, 19C and 31N to

the two-body and three-body continuum channels, the probability of the M1-

transition of the isobar-analog state 6Li(0+) to the 6Li(1+) ground state and to

the α + d continuum, three-body continuum structure of the 6He and 14Be halo

nuclei.

Subjects of research are two-body and three-body structure of light nu-

clei, including halo nuclei, electromagnetic and weak transitions in nuclei, nu-

clear interaction potentials, mechanisms of the strong interaction.

Methods of research. Cluster potential model based on variational meth-

ods on Gaussian and hyperspherical Lagrange-mesh bases for the calculations

of the two-body and three-body bound state wave functions and correspond-

ing energy spectrum; Numerov algorithm for the calculation of the two-body

scattering wave functions; R-matrix approach in the hyperspherical Lagrange-

mesh basis for the calculation of the three-body continuum wave functions with

the help of the propagation method on the basis of the Numerov algorithm;

method of orthogonalizing pseudopotentials for the elimination of Pauli forbid-

den states.

Scientific novelty of the research, presented in the dissertation consists

in the following:
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- For the first time an extremely high sensitivity of the energies of the

compact 0+
1 and 2+

1 states of the 12C nucleus to the description of the two body

Pauli forbidden states was established, which leads to the occurrence of the so

called ”almost forbidden states” in the three-body functional space.

- For the first time the R-matrix approach is developed in combination with

the propagator method for the study of the three-body continuum structure of

light nuclei 6He and 14Be in the frame of the hyperspherical harmonics method

on a Lagrange-mesh basis. It is shown that for the convergence of the results

the wave function has to be matched with its asymptotics at large distances

(about 1000 fm). The diagonal- and eigen-phases of the three-body collision

matrix have been calculated and a new 14Be(2+) resonance is predicted near

Ex=3.4 MeV.

- Theoretical estimations for the transition probabilities per time and en-

ergy units of the beta-decay of the two-neutron halo nucleus 6He to the α + d

continuum channel have been obtained. For the first time it was shown that for

the reproduction of the experimental data on the beta-decay, it is necessary to

use microscopically found α − d-potentials containing a forbidden state in the

S-wave, reproducing phase shifts and the ground state energy. It was shown

also that the convergence of matrix elements requires to know wave functions up

to 30 fm and hypermomentum components up to K=24. It was demonstrated

that the halo effects play an important role in the description of the process

because of mutual suppression of the internal and external parts of the matrix

elements.

- For the first time the theoretical estimations for the probabilities of the

M1-transition per time and energy units of the isobar-analog state 6Li(0+) to

the α + d continuum have been obtained. It was shown that only in the case of

using the potentials with forbidden states the integral width of the transition

0.9 meV is well consistent with the previous simplified calculations. It was

shown also that the convergence of the results requires to take the upper limit
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of the effective integral around 25-30 fm and the hypermomentum components

up to K=20.

- For the first time the theoretical estimations for the transition probabilities

per time and energy units of the 11Li to the two-body 9Li+d continuum channel

have been obtained, very consistent with new experimental data. It was shown

that in this case, a resonance in the S-wave of the 9Li + d system at the energy

position of about 0.7 MeV plays the main role, not depending on which potential

model is used: with a repulsive core or with a forbidden state. The 9Li + d-

potential which reproduces this resonance, describe well the shape and absolute

values of the transition probabilities with the help of absorbing imaginary term

due-to open decay channels.

- For the first time theoretical estimations for the beta-decay probabilities

per time and energy units of the 11Li halo nucleus to the 9Li+p+n three-body

continuum channel have been obtained.

- For the first time theoretical estimations for the beta-decay probabilities

per time and energy units of the one-neutron halo nuclei 11Be, 19C and 31Ne to

the two-body core + p continuum channels have been obtained in the potential

cluster model. It was demonstrated that the transition probabilities are strongly

sensitive to the separation energy of the valence neutron.

Reliability of the obtained results is provided by the followings: modern

methods of quantum mechanics and the theoretical nuclear physics and highly

effective numerical methods and algorithms are used; careful check of a con-

sistence of the received theoretical results with experimental data and results

of other authors is performed; conclusions are well consistent with the main

provisions of the theory of structure of light nuclei.

Theoretical and practical value of research results. The theoretical

and practical values of the results, presented in the dissertation, consist in the

possibility to use them for the development of the theory of nuclear structure,

of the cluster model of light nuclei. The methods developed in the thesis can be
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applied for the solution of few-body quantum mechanical problems in molecu-

lar, atomic and nuclear physics. The obtained theoretical estimations for the

transition probabilities of the two-neutron halo nucleus 11Li into the 9Li+p+n

three-body continuum channel and one-neutron halo nuclei 11Be, 19C and 31Ne

to the two-body continuum channels can be used when planning experiments

on these processes. The theoretical estimations for the M1-transition proba-

bilities of the isobar-analog state 6Li(0+) to the α + d-continuum can be used

when planning experiments on this process and also when examining the parity

violating effects in the strong interaction.

Realization of the research results. The new resonance 14Be(2+) around

Ex=3.4 MeV predicted in the dissertation was confirmed recently in the exper-

iment with Ex(exp)=3.54(16) MeV: Aksyutina Yu., Aumann T., Boretzky K.,

et al. ”Study of the 14Be continuum: Identication and structure of its second

2+ state”, Phys. Rev. Lett. - New York, 2013. - vol. 111, N. 24. - 242501.

The methods developed in the dissertation work have been used by 1)P. De-

scouvemont in Journal of Physics G: Nuclear and Particle Physics, 2010. - vol.

37.- id.064010 when the three-body continuum structure of the 12C nucleus is

studied and by 2) E. C. Pinilla, et al. in Physical Review, 2012, - vol. C 85.

- id.054610 when the three-body breakup of the 11Li nucleus is studied in the

frame of the Interuniversity Attraction Pole Program P6/23 ”Spectroscopy of

light nuclei and nuclear reactions in microscopical models” (2010-2012) initi-

ated by the Belgian-State Federal Services for Scientific, Technical and Cultural

Affairs. The theoretical results presented in the thesis have been used when

planning the last experiments on the beta-decay of halo nuclei 6He and 11Li

into the deuteron channel by R. Raabe, J. Buescher, et al. in Phys. Rev. C,

V. 80, N.5, 054307, 2009 and by R. Raabe, A. Andreyev et al. in Phys. Rev.

Lett., V. 101, N. 21, 212501, 2008. In recent papers of M. Grieser et al., Eur.

Phys. J., Special Topics, v. 207, N. 1, pp.2012 and M.J.G. Borge et al. J.

Phys. G: Nucl. Part. Phys. 40, 2013, 035109 the results on the beta-decay
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of one-neutron halo nuclei 11Be, 19C and 31Ne into two-body and 11Li into the

three-body continuum channels, presented in the thesis have been used to help

devising a storage ring for the ISOLDE facility at CERN.

Approbation of the work. Main results of the dissertation have been

reported at the seminars of the Nuclear physics department of the INP of the

UzAS, of the National University of Uzbekistan, of the Brussels Free Univer-

sity (ULB), of the Surrey University (England), of the Inha University (Korea),

at 6 International Conferences ”50 Years of the Nuclear Shell Model” (Heidel-

berg, Germany, 1999), ”SOTANCP-2010” (Brussels, Belgium, 2010), ”Modern

Problems of Nuclear Physics” (Samarkand, 2003; Tashkent, 2009), ”Nuclear

and Radiation Physics” (Almaty, Kazakhstan, 2011), ”Nuclear science and its

application”, (Samarkand, 2012).

Publication of results. The main results of the dissertation have been

published in 20 scientific works, 9 of them are in international leading jour-

nals (1 of them is as Proceedings of the International Conference), 1 paper

is published in Uzbek Journal of Physics (as Proceedings of the International

Conference), 1 paper is in the Proceedings of the International Conference (Ni-

igata, Japan, 2003), 1 preprint is in the Los-Alamos e-arXiv and 8 Abstracts

are of International Nuclear Physics Conferences.

Structure and volume of the dissertation. The dissertation consists of

an introduction, eight chapters, conclusion, a reference list and two appendices.

The dissertation is printed on 181 pages,and includes 33 figures and 14 tables.
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I. EFFECTIVE POTENTIAL MODELS FOR THE STRUCTURE

OF LIGHT NUCLEI

A central place in nuclear physics belongs to the NN- interaction models.

In nuclear physics, one starts with a realistic NN-potential, with parameters,

fitted to reproduce the NN-scattering data and deuteron observables. The NN-

potential is required to be consistent with the OPE-mechanism of Yukawa at

large distances (from 1.5 - 2 fm). At intermediate distances (from 0.5 fm) the po-

tential parameters are defined mostly from the scalar σ-meson exchange mecha-

nism which yields an attraction. At short distances (up to 0.5 fm) the behavior

of the NN-interaction potential is repulsive and it is a challenge for the nuclear

physics community around the world. All the gluon-, vector meson(ρ and ω)-,

quark-exchange mechanisms are believed to be responsible for the short-range

NN-repulsion. The realistic Reid [1], Argonne [2], Bonn OBE [3] potential mod-

els of the NN- interaction, containing a repulsive core at short distances yield

an overall good description of the few-nucleon observables. However, without

additional 3N-forces these models underbind the lightest 3He and 3H nuclei

by about 1 MeV. A serious problem is an understanding of the difference be-

tween the theoretical estimations and experimental data for the polarization

observables in the p + d -scattering process [4], the so-called Ay-puzzle. Recent

effective chiral field theory [5] calculations also did not resolve this problem.

At the same time, in nuclei due to overlap of nucleons with the size of about

0.8 fm, the average distance between the centers of nucleons is estimated to be

about 1.8 fm. Consequently, at short distances, a quark structure of nucleons

comes into the game. An exchange mechanism between valence quarks directly

contributes to the exchange forces between the two nucleons. One can note at
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this point, that strong nuclear forces are originated from the strong interaction

physics between valence quarks.

A valuable information on the NN-interaction and on nuclear forces at short

distances can be extracted from the study of the excited nucleon and delta spec-

trum (see recent experimental data [6] and review [7] and references therein).

These studies are believed, in particular, to answer the question: what is the

most important exchange mechanism between valence quarks in hadrons, hence

between nucleons at short distances (in the quark-core region) [8, 9]. The Sci-

entific Programs of the International Workshops on Physics of Excited Nu-

cleons (NSTAR) which are held every two years in hadronic physics centers

around the world (Florida, USA, 2005; Bonn, Germany, 2007; Beijing, China,

2011; Thomas Jefferson Laboratory, USA, 2011; University of Valencia, Spain,

2013 [10]) include all the theoretical and experimental developments in current

field (see also Ref. [11]).

In Refs. [12–17] we have applied a relativistic chiral quark potential model

(ChQPM) [18–20] to the excited nonstrange baryon spectroscopy and demon-

strated that the model can describe the excited baryon spectrum fairly well.

There are very few models of the NN-interaction which incorporate the

quark structure of the nucleon [21]. The quark motivated realistic Moscow

NN-potential model [22, 23] does not have a traditional repulsive core at short

distances. Instead of the core, the potential contains forbidden states at lowest

partial S- and P-waves, which are required to be projected out during the

solution of the dynamical many-body Schrödinger equation. The parameters

of the model are fitted only to the NN-scattering data, while the deuteron

appears as the first excited state in the coupled 3S1−3 D1 channel without any

fitting parameters. It is important to note, that there is a SUSY-transformation

[24] between the deep Moscow NN-potential [23] and the Reid soft core NN-

potential [1]. Detailed studies of the structure of the 3He and 3H nuclei have

demonstrated [22,23], that the Moscow NN-potential underbinds three-nucleon
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systems by about 2.5 MeV, which means that three-body forces in this case

should give a larger contribution in comparison with the case of the traditional

NN-potential models (Reid, Argonne, Bonn).

The existence of forbidden states in the Moscow NN-potential model is

motivated by the quark structure of the interacting nucleons [25]. From the

Constituent Quark Model studies it was found that the six-quark wave function

component s4p2 has a dominant projection on the NN-channel compared to the

bag-like symmetric s6-configuration [22, 23]. The orthogonality of these two

six-quark components is believed to yield a strong repulsion in the NN-channel

which is modeled by the deep attractive potential with forbidden states at lowest

partial S- and P-waves.

The first suggestion for the deep potentials came from Neudatchin et al.

[26]. Then this idea has been realized by Buck, Friedrich and Wheatley for

the description of the α − α interaction [27]. These potentials have a strong

microscopic background, and yield a node at short distances for the scattering

wave functions. The α − α potential suggested contains two Pauli forbidden

states in the S-wave and a single forbidden state in the partial D-wave. The

phase shifts in these waves are well described with only two fitted parameters of

the potential. The role of forbidden states is expected to be very important for

the compact ground (0+) and first excited (2+
1 ) states of the 12C nucleus in the

3α cluster potential model. On the other hand, the 12C nucleus is a three-body

Borromean system, that means that no any two-body subsystems are bound and

it is the lightest bound alpha-cluster system [28]. Structure of this nucleus is

still one of the hot topics in the literature [29–35]. The microscopic 3α potential

models of the 12C nucleus structure [36–41] yield a strong overbinding by 7-10

MeV for the ground 0+
1 (Eexp = −7.27 [42]) and first excited 2+

1 states, while the

macroscopic 3α potential model of Ali and Bodmer (AB) [43] yields a strong

underbinding. The application of the alternative deep potential model of Buck,

Friedrich and Wheatley (BFW) [27] with forbidden states in the lowest S- and
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D- waves met serious problems related to the elimination of Pauli forbidden

states in the three-body functional space [44,45]. A method of orthogonalizing

pseudopotentials for the elimination of forbidden states, which will be developed

in chapter 2, is expected to clarify the question, is it possible to describe the

12C nucleus structure in a macroscopic 3α model [46, 47]. This question raised

a lot of activity last years [48–51].

Models of the deep potentials with forbidden states for the interaction be-

tween nuclear clusters are expected to present a special interest for the structure

of light halo nuclei, including their continuum structure. The deep potential

models have a microscopic background and are consistent with the realistic

models of the NN-interaction. It would be very important to see a difference

between the theoretical results for the deep and shallow potential models when

studying the processes at low energies, such as beta-decay and electromagnetic

transition of the halo nuclei to the two-body and three-body continuum chan-

nels.

Currently, there is a big effort for the understanding of the structure of

neutron rich and proton rich halo nuclei, which do not exist in Nature but are

produced at nuclear facilities [52–56]. The halo nuclei are the most popular

objects in nuclear physics for the last two decades beginning from the discovery

of the halo effect near the neutron drip line [57–59]. This discovery triggered

many experimental and theoretical works on exotic nuclei, such as 6He, 11Li

or 14Be. They are weakly bound and have very extended halo structure. The

large radii are interpreted as arising from an extended spatial density of a

few neutrons [58, 60, 61]. Three-body halo systems present a large variety of

interesting features [62–64]. Their bound-state spectroscopy is now relatively

well known. On the experimental side, current intensities of radioactive beams

are high enough for precise measurements of spectroscopic properties, such as

energies, r.m.s. radii or quadrupole moments. On the theoretical side, several

methods have been developed, and provide accurate solutions of the three-
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body Schrödinger equation. The hyperspherical harmonic method (HHM) is

known to be well adapted to three-body systems [65, 66]. It has been applied

to many exotic nuclei. In Ref. [67], the HHM has been combined with the

Lagrange-mesh technique. The information provided by continuum states is a

natural complement to the bound-state spectroscopy. Experimentally, three-

body continuum states are investigated through breakup experiments (see for

example Ref. [68]). On the theoretical point of view, various methods have been

developed [69–85]. Some of them, such as the Complex Scaling Method [86], or

the Analytic Continuation in the Coupling Constant [87] deal with resonances

only, they cannot be applied to non-resonant states. Other methods, such as

the R-matrix theory [88] are more difficult to apply, but can be used for non-

resonant, as well as for resonant states. Applications of the R-matrix method

to two-body systems have been performed for many years in nuclear as well as

in atomic physics. In nuclear physics, applications to three-body systems are

more recent [89], however, it raises problems owing to the long range of the

coupling potentials. This can be solved by using propagation techniques [90].

In chapter 3 we will extend the R-matrix method in the frame of HHM on a

Lagrange mesh to the three-body continuum study [91]. We show applications

to the α+n+n and 12Be+n+n halo systems, for which two-body potentials are

available in the literature.

Among their remarkable properties, nuclei with a neutron halo display un-

usual β decay channels. There is indeed the possibility that the decay occurs

in the halo, releasing the halo nucleons. This process has been observed in the

β delayed deuteron decay of 6He and 11Li [92–98]. The β decay with emission

of a deuteron, also known as β delayed deuteron decay, is energetically possi-

ble for nuclei with a two-neutron separation energy S2n, limited by the energy

conservation condition

S2n < B(2H) + (mn −mp −me)c
2 ≈ 3.007 MeV (1.1)



23

where B(2H) is the binding energy of the deuteron, and mn, mp, and me are

the neutron, proton, and electron masses, respectively. Only a few nuclei have

low enough separation energies to allow this decay: 6He, 8He, 11Li, 14Be, 17B,

27F. The measured spectrum shapes of these decay processes offer a unique

opportunity of probing the halo properties and the examination of potential

models, models with a repulsive core and alternative models with forbidden

states in the lowest partial waves. The β decay of the 6He halo nucleus into α

and a deuteron,

6He → 4He + d + e− + ν̃e (1.2)

has been observed in several experiments [92–94] in spite of the fact that the

branching ratio was smaller than expected from simple R-matrix [92], two-

body [99], and three-body [100] models. Various values of the branching ratio

have been obtained, i.e., (2.8 ± 0.5) × 10−6 [92], (7.6 ± 0.6) × 10−6 [93], and

(1.9± 0.8)× 10−6 [94], for a deuteron cutoff energy of about 350 keV. A semi-

microscopic model study [101] of the process has been able to explain that

the low value of the branching ratio is the result of a cancellation between

the ”internal” and ”external” parts of the Gamow-Teller matrix element. The

overlaps of the 6He ground state and α + d scattering wave functions in the

internal (R < 5 fm) and external (R > 5 fm) regions have very close magnitudes

but opposite signs. It is clear that the external part of the Gamow-Teller matrix

element reflects the properties of the halo structure of the 6He nucleus. An

improved microscopic wave function of 6He confirmed this interpretation [102].

It was also confirmed by a fit in the R-matrix framework [103] which yields

a satisfactory description of the deuteron spectrum shape and branching ratio

of Ref. [93]. A fully microscopic description of the β decay of the 6He nucleus

to the 6Li ground state and to the α + d continuum [104] was performed in

a dynamical microscopic cluster model with consistent fully antisymmetrized

wave functions for the initial bound state and the final scattering state. This
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model provided a reasonable agreement with the data of Ref. [93]. Without

any fitted parameter, those data were underestimated by about a factor of

2. Hence, the same microscopic results now overestimate the recent data of

Ref. [94] by a similar factor. Since new data [94] with much better statistics

are now available which provide an even lower branching ratio, it is timely to

reexamine the interpretation of the β delayed deuteron decay. Since improving

the microscopic model of Ref. [104] is not easy, we prefer to base our discussion

on an α + N + N three-body model. Very accurate wave functions of 6He

are available in hyperspherical coordinates [67]. A previous calculation based

on the same model [100] contains several limitations which led to a significant

overestimation of the data of Ref. [93]: the calculations were restricted to very

small values of the hypermomentum, K = 0 and 2 and the halo description

may not have been sufficiently extended. In chapter 4 we will study the β

decay of the 6He halo nucleus into α+d continuum channel within the HHM on

a Lagrange mesh and examine different α+d potential models, with a forbidden

state in S-wave, and alternatively, with a strong repulsive core [105,106].

Electromagnetic transition processes provide a useful tool for the study of

the nuclear structure and the reaction mechanisms. The theoretical study of

such processes yields estimates for the different static and dynamical observ-

ables of a nucleus. In 6Li, the (0+; T = 1) state has raised interest as a good

candidate for observing parity violation [107, 108]. Indeed, its decay into the

α+d continuum is forbidden by parity conservation. Since electromagnetic M1

transitions into this continuum are allowed, they have been also studied because

they may compete with the parity-violating decay and make its detection dif-

ficult. However, the 6Li(0+; T = 1) state is also interesting by itself. It is most

likely a halo state, as it is the isobaric analog of the 6He ground state [109].

The M1 transition process to the continuum

6Li(0+) → 4He + d + γ (1.3)
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is in fact also an excellent tool to explore these halo properties [110] and compare

them with those of 6He [105]. As was discussed above, in the beta-decay of 6He

halo nucleus the deuteron spectrum is strongly sensitive to the halo structure.

Similarities between this process and the γ-delayed deuteron emission of 6Li(0+)

are expected, and should test charge symmetry in exotic light nuclei. The

branching ratio of the total transition probability to the α + d continuum and

the transition probability to the 6Li(1+) ground state was estimated as 8 ×
10−5 under a number of simplifying assumptions [108]. However the shape and

magnitude of the transition probability to the continuum as a function of the

deuteron energy were not studied. In addition, the sensitivity with respect to

the α + d potential, as well as convergence problems, were not addressed. In

chapter 5 we will study the M1 transition processes from the 6Li(0+) excited

state to the α + d continuum, as well as to the 6Li(1+) ground state in the

two-body and three-body models.

The most interesting halo nucleus is probably 11Li [63]. Its two-neutron

separation energy is particularly small: 300 ± 19 keV according to the atomic

mass evaluation [111] or 376±5 keV according to recent results [112–115]. This

nucleus can be considered as a 9Li core surrounded by two halo nucleons dis-

tant from each other by more than 6 fm [116] in agreement with theoretical

expectations [117]. It differs from 6He by the fact that its core does not corre-

spond to a closed shell. The halo structure is understood as due to a virtual

state in the s wave of the 9Li + n interaction [118]. Another difference with

6He is that the core is unstable. Therefore many more β decay channels are

open. This complicates experiments but also offers many opportunities to test

models [96,97,119]. Among the possible channels, the delayed deuteron β decay

11Li → 9Li + d + e− + ν̃e. (1.4)

remains especially interesting because this decay essentially occurs inside the

halo and can probe its properties. In experiments however, the deuteron decays
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can not easily be separated from the delayed triton channel [120]. Anyway the

β delayed deuteron decay has been observed [96, 97] with a branching ratio of

(1.5±0.2)×10−4 [97]. This order of magnitude is consistent with predictions of a

simple model [121] and of a model based on a limited hyperspherical-harmonics

expansion [122]. In chapter 6 we reexamine this process at the light of the

knowledge gained on the 6He decay in chapter 4. Experiments have revealed

the important role played by a resonance around 18 MeV in the excitation

spectrum of 11Be [97]. Taking also that information into account, the transition

probability per time and energy units will be calculated. The total transition

probability is constrained with the branching ratio. It will be analyzed by

comparison with the 6He decay with emphasis on the role of the node structure

of the scattering wave functions, which are different for deep potentials with

forbidden states and the potentials with a repulsive core. On the basis of this

analysis we try to explain new data [98] which yield an energy-dependence, by

modifying our potential parameters [123,124].

A theoretical study is also possible for the beta-decay of the 11Li nucleus to

the 9Li + n + p channel [125]:

11Li → 9Li + n + p + e− + ν̃e (1.5)

This process is even more severely restricted, i.e. a decay of a halo neutron

releasing a free neutron and a free proton. The condition is

S2n < (mn −mp −me)c
2 ≈ 0.782 MeV. (1.6)

Among nuclei with known two-neutron separation energy, the unique nucleus

where this decay is allowed is 11Li. This process should be observable if the

branching ratio is large enough. However, the small energy available for the

decay indicates that the phase space is much smaller than for the deuteron

emission. In chapter 7 we will develop the three-body model for the study of

this process and estimate the transition probability and the branching ratio with
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the help of the modified Coulomb functions for the continuum, which simulate

the real continuum wave function corresponding to the nuclear plus Coulomb

interaction potentials.

Some neutron-rich halo nuclei can simply emit a proton in a delayed beta-

decay process [126]. This process is possible if the neutron separation energy

is very small. Indeed a weakly bound halo neutron may β decay by emitting a

proton.

A one-neutron halo nucleus can be viewed as a normal nucleus, the core,

to which a neutron is bound in an orbital with a large radius. The β decay of

the bound halo neutron may occur, releasing the proton, under the condition

of energy conservation

Sn < (mn −mp −me)c
2 ≈ 0.782 MeV, (1.7)

where Sn is the neutron separation energy of the decaying nucleus. Among

one-neutron halo nuclei for which Sn is known with sufficient precision, this

decay is allowed at least for 11Be and 19C, and probably for 31Ne. It should be

observable if the branching ratio is large enough. In chapter 8 we will study this

rare decay mode within a two-body potential model. The initial halo nucleus is

treated as a core+neutron bound state. The final states lie in the core+proton

continuum. How rare is this decay is the main question raised in the present

exploratory study.

In view of above discussion, the aim and tasks of the Dissertation have been

formulated, which were given in the Introduction on pages 10 and 11.
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II. VARIATIONAL STUDY OF THE 12C NUCLEUS

STRUCTURE IN A 3α MODEL

1 As was indicated in chapter 1, in this chapter we study the 3α-problem

by using the l-independent (ABd0) and l-dependent (ABd) versions of the Ali-

Bodmer α− α potential [43], and also BFW potential [27] in the framework of

the cluster potential model [129] for light nuclei based on a high accuracy vari-

ational method on Gaussian basis (VGM) in comparison with the results of the

Lagrange-mesh (LMM) and Hyperspherical harmonics (HHM) methods. The

Gaussian basis variational method (VGM) has been used successfully in many

structure calculations of various atomic and nuclear systems [23,130–133]. The

two alternative potential models differ from each other in describing the Pauli

repulsion part of the alpha-alpha interaction. As a result, the local on-shell

equivalent potential models give still different wave functions for the 8Be ground

state: while the BFW potential yields a nodal behavior, the AB potential does

not describe this microscopically substantiated property. For the elimination of

forbidden states we use the method of orthogonalizing pseudopotentials (OPP)

which allows to work in the complete functional space. The main feature of this

chapter is the description of the convergence of the orthogonalizing procedure

for the ground and lowest excited states of the 12C nucleus. When using the

OPP method one can examine the convergence of the three-body energy as a

function of the projecting constant λ [23, 134]. We check also the convergence

in respect to the description of the two-body forbidden states fixed by chosen

αα potential. We show that the convergence of the orthogonalizing procedure

has different character for the compact shell-model like bound states and for

1This chapter is based on the results of Refs. [46, 47,127,128]
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the resonance states with a well developed cluster like structure.

2.1. Model

The Hamiltonian of the 3α system consists of the kinetic energy operator

and interaction terms between the α-particles:

Ĥ = Ĥ0 + V12(~r12) + V23(~r23) + V31(~r31). (2.1)

In common case of three particles with mass numbers A1, A2 and A3 (expressed

in units of nucleon mass mN) and space coordinates ~r1, ~r2 and ~r3, the Jacobi

coordinates (~xk, ~yk) in the k-set are defined as:

~xk =
√

µij(~rj − ~ri)

~yk =
√

µ(ij)k

(
~rk − Ai~ri + Aj~rj

Ai + Aj

)
, (2.2)

where (i,j,k) is even permutation of (1,2,3) and the dimensionless reduced

masses are defined as

µij = AiAj/(Ai + Aj)

µ(ij)k = (Ai + Aj)Ak/(Ai + Aj + Ak). (2.3)

In these coordinates the kinetic energy operator of the relative motion of three

particles is expressed simply [22,130]:

Ĥ0 = − h̄2

2mN

[(
∂

∂~xk

)2

+

(
∂

∂~yk

)2
]

. (2.4)
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A probe wave function of the 3α- system is expanded over symmetrized Gaus-

sian basis [130]:

ΨJM
s =

∑
γj

c
(λ,l)
j ϕs

γj, (2.5)

with

ϕs
γj = ϕγj(1; 2, 3) + ϕγj(2; 3, 1) + ϕγj(3; 1, 2),

ϕγj(k; l,m) = Njx
λ
ky

l
kexp(−αλjx

2
k − βljy

2
k)FJM

λl (~̂xk, ~̂yk), (2.6)

where the orbital momenta λ and l are conjugate to the Jacobi coordinates ~xk

and ~yk, respectively, and

γ = (λ, l, J,M) = (γ0, J,M),

while Nj is a normalization factor.

The nonlinear variational parameters αλj, βlj are chosen as nodes of the Cheby-

shev grid:

αλj = α0tan(
2j − 1

2Nλ

π

2
), j = 1, 2, ...Nλ,

βlj = β0tan(
2j − 1

2Nl

π

2
), j = 1, 2, ...Nl, (2.7)

where α0 and β0 are scale parameters for each (λl) partial component of the

three-body wave function. When we use the Chebyshev grid, the basis fre-

quencies αλj, βlj cover larger and larger intervals around the scale parameters

as the numbers Nλ and Nl increase. This allows us to take into account both

short-range and long-range correlations of particles. The extraordinary flexibil-

ity of the many-particle Gaussian basis makes it possible to describe three-body

configurations that are formed in the ground and excited states of multicluster

systems, and which exhibit an extremely high degree of clustering [130].

The angular part of the Gaussian basis is factorized into the angular com-

ponent and the internal wave functions φ(i) of the α-particles [130]:

FJM
λl (~̂xk, ~̂yk) = {Yλ(~̂xk)

⊗
Yl(~̂yk)}JMφ(1)φ(2)φ(3). (2.8)
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By using the above expansion the energy functional is minimized according to

the variational principle. The method was firstly suggested in the Ref. [135]

and successfully employed for the study of the structure of light nuclei with

A = 6 and A = 3 [23, 130, 131, 134]. A high accuracy of the method has

been demonstrated in a number of works [23,130–133]. A general formalism of

the method and analytical expressions of the matrix elements of the overlapping

integral, the kinetic energy operator, central, spin-orbital and tensor interaction

potentials for the system of three identical fermions with a spin value 1/2 have

been given in Ref. [130]. A corresponding part of these matrix elements can be

used for the 3α-system.

In the case when we use a deep αα- potential, the method of OPP is em-

ployed for the elimination of forbidden states from the solution of the three-

body Schrödinger equation. In this method one has to replace the interaction

potential Vjk(r) = Vi(r) by the pseudopotential of the form [46]

Ṽi(r) = Vi(r) +
∑

f

λf Γ̂
(f)
i , (2.9)

where λf is the projecting constant,

Γ̂
(f)
i is the projecting operator to the f -wave forbidden state in the two-body

subsystem (j + k), (i, j, k) = (1, 2, 3), and their cyclic permutations.

We note that the OPP method includes only the first term in the expansion of

the complete three-body projector [37]

P̂ =
3∑

i=1

P̂i −
3∑

i,j=1

P̂iP̂j +
3∑

i,j,k=1

P̂iP̂jP̂k − · · · , (2.10)

where

P̂i =
∑

f

Γ̂
(f)
i . (2.11)

While using the OPP approach, we neglect three-cluster (triple) Pauli forces.



32

Nevertheless, it allows us to obtain the solution of the Schrödinger equation at

large values of λf which is orthogonal to the two-body forbidden states.

2.2. Numerical results

The first model of the α−α interaction used in our work is the potential of

Ali and Bodmer [43] with a Gaussian form-factor:

VAB(r) = V1exp(−η1r
2) + V2exp(−η2r

2) + Vcoul(r), (2.12)

where the last term presents a Coulomb potential between two α particles. The

parameters of the repulsive and attractive parts of the l-independent version

of the Ali-Bodmer potential (ABd0 )are V1 = 500 MeV, η1 = 0.49 fm−2 and

V2 = −130 MeV, η2 = 0.225625 fm−2 respectively. The Coulomb interaction

potential in our calculations is taken in the form

VCoul(r) = 4e2erf(br)/r, (2.13)

where b=0.75 fm−1, which corresponds to the α particle charge distribution

being the Gaussian form with a width of 1/b.

In the l-dependent version of the Ali-Bodmer potential (ABd), the parame-

ters are as in the S-wave, except V1 = 320 MeV for l = 2, V1 = 0 for l > 2 and

b =
√

3/2.88 fm−1 in the Coulomb potential for all l. We use h̄2/mα = 10.4465

MeV fm2 and e2=1.44 MeV fm in our calculations.

The second alternative deep potential model of Buck, Friedrich and Wheat-

ley [27]

VBFW (r) = V0exp(−ηr2) + VCoul(r), (2.14)

with V0=-122.6225 MeV, η = 0.22 fm−2 . This potential describes well the

experimental phase shifts of the αα-scattering δL(E) with L = 0, 2, 4 up to 40

MeV. The potential has three nonphysical bound states forbidden by the Pauli
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principle in each αα-subsystem, with the energy values E(0+
1 ) = −72.625691755

MeV , E(0+
2 ) = −25.618638588 MeV, E(2+) = −22.000501732 MeV. The 0+

1

state corresponds to the shell configuration s8, while the 0+
2 and 2+ states

correspond to the s6p2. These forbidden states in our three-body calculations

are eliminated by using the method of orthogonalising pseudo-potentials (OPP)

briefly described above. This method allows us to obtain the solution of the

Schrödinger equation at large values of λf which is orthogonal to the two-body

forbidden states.

Table 2.1.

The energy spectrum of the 12C nucleus calculated with the

Ali-Bodmer α− α potential in different variational approaches in

MeV

ABd0 (l-indep.)

(Jπ, T ) LMM HHM VGM

(0+
1 , 0) -0.58427008 -0.58407 -0.584266 with Coulomb

(0+
1 , 0) -5.122093595 -5.122 -5.1220936 no Coulomb

(0+
2 , 0) -1.3606 -1.2 -1.36062

(0+
3 , 0) -1.338 -0.8 -1.33873

(2+
1 , 0) -1.15 -1.3398

ABd (l-dep.)

(0+
1 , 0) -1.523 -1.523 with Coulomb

(0+
1 , 0) -6.423 -6.423 no Coulomb

(0+
2 , 0) -1.92 -1.934

First we note that a very large symmetrized Gaussian basis is used in our

calculations. For the estimation of the energy levels with (Jπ, T ) = (0+, 0) we

include the three-body channels (λ, l) = {(0, 0); (2, 2); (4, 4)} and for the levels

with (Jπ, T ) = (2+, 0) we take the three-body channels (λ, l) ={(0,2); (2,0);

(2,2); (2,4); (4,2); (4,4)}. The results indicate that a further extension of the

basis does not have a remarkable influence on the accuracy of the expansion.
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The numerical results obtained with the Ali-Bodmer α − α potential are

presented in Table 2.1 in comparison with the LMM and HHM, developed by

D. Baye and P. Descouvemont. The calculations with the additional Coulomb

term were performed only for the ground state. We note that all three methods

yield close numbers for the ground state. However, for the excited states the

convergence of the HHM is poor, while other two methods give very close and

accurate numbers. In addition, the estimations for the ground state are far

from the experimental energy value E = −7.275 MeV [42] due to strong off-

shell effect of the repulsive core presented in the Ali-Bodmer potential.

In the calculations within the VGM the number of Gaussians is 680 and

1264 for the 0+ and 2+ levels, respectively. We note, however, that a good

saturation was already obtained with 372 Gaussians for the 0+ levels (-5.12205,

-1.35234 and -0.87654 MeV) and with 875 Gaussians for the 2+ levels (-1.2369

MeV). Even 280 Gaussians yield a good accuracy for the ground state energy

value, although the 0+
3 excited state is estimated roughly (-5.1215, -1.341 and

-0.5564 MeV).

In the case of the BFW deep αα- potential we use the OPP method [22,

135] for the elimination of forbidden states from the solution of the three-body

Schrödinger equation.

The explicit form of the projector on the f -wave forbidden state in each

two-body subsystem is written as:

Γ̂
(f)
i =

1

2f + 1

∑
mf

| ϕfmf
(~xi) >< ϕfmf

(~x′i) | δ(~yi − ~y′i), (2.15)

where the forbidden state wave function is expanded over Gaussian basis:

ϕfmf
(~xi) = xf

i

∑
m

N (f)
m b(f)

m exp(− r2
i

2r
(f)2
0m

)Yfmf
(~̂xi). (2.16)
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Here r0 is the ”projector radius”, and N
(f)
m is the normalizing multiplier:

N (f)
m = 2f+7/4 α

(2f+3)/4
m

π1/4[(2λ + 1)!!]1/2 , αm = τ 2/(2r2
0m). (2.17)

In order to check the behavior of the 3α-energy when improving the accuracy

Table 2.2.

Sets of Gaussian approximations for the forbidden states wave

functions of the αα system and corresponding energy values in MeV

N (Gaussian numbers) E(0+
1 ) E(0+

2 ) E(2+)

≤ 2 −72.5445 −25.106 −21.676

3 −72.6126 −25.5558 −21.8837

4 −72.6233 −25.6111 −21.9576

7 −72.624905 −25.6173 −21.999098

15 −72.625691755 −25.618638588 −22.000501732

of the expansion of the two-body αα forbidden states wave functions, we choose

several sets of the Gaussian approximations. The corresponding approximate

values of the αα forbidden states energies are shown in the Table 2.2. In Set 1

the αα- forbidden state wave function of the 0+
1 -level is approximated via N=1

Gaussian, and wave functions of the forbidden 0+
2 - and 2+-states are approx-

imated via N=2 Gaussian, etc. The values of the two-body forbidden states

energies are given in corresponding squares. By comparison of these numbers

with the corresponding exact values of the two-body 0+
1 , 0+

2 , 2+-forbidden states

energies, one can conclude about the quality of the approximation for the given

number N. We note that the wave function of the 0+
2 - αα forbidden state con-

tains a node due to orthogonality to the first 0+
1 -level, hence it can not be

expressed by a single Gaussian.

The spectrum of the energy levels of the 12C nucleus with (Jπ, T ) = (0+, 0)
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Table 2.3.

The energy spectrum of the 12C nucleus with (Jπ, T ) = (0+, 0) in MeV

for the several sets of Gaussian approximations of the αα forbidden

states at several values of the projecting constant

N λ (MeV) 10 102 103 104 105 106 107 108

≤ 2 E1 -210.80 -45.194 -20.665 -18.999 -14.882 -12.85 -12.56 -12.44

E2 -150.72 -20.037 -0.677 +0.274 1.210 1.284 1.39 1.42

E3 -109.37 -15.878 +1.239 1.306 +2.98 3.446 3.99 4.01

< P > 29.83 30.36 0.847 1.133 1.73 0.300 6.E-2 5.E-2

3 E1 -210.71 -43.298 -19.776 -16.492 -6.387 -3.666 -3.35 -3.311

E2 -150.05 -17.183 -0.411 -0.021 1.238 1.331 1.42 1.463

E3 -109.53 -15.652 +1.344 1.380 +2.553 3.361 4.07 4.046

< P > 29.93 28.78 1.017 2.837 3.100 0.322 1.E-2 1.E-2

4 E1 -210.72 -44.149 -20.15 -16.227 -.463 0.051 0.406 0.468

E2 -150.28 -17.423 -0.512 -0.417 1.357 1.424 1.522 1.571

E3 -109.37 -15.430 +1.336 1.355 +2.979 3.319 4.059 4.087

< P > 29.92 28.76 1.120 3.647 0.397 0.242 6.4E-2 8.7E-3

7 E1 -210.69 -44.207 -20.15 -16.106 -.830 -0.435 -0.307 -0.283

E2 -150.32 -17.585 -0.531 -0.422 1.353 1.407 1.513 1.551

E3 -109.32 -15.310 +1.334 1.353 +3.019 3.316 4.038 4.055

< P > 29.95 28.92 1.130 3.777 0.721 8.76E-2 2.3E-2 4.7E-3

and (2+, 0) for the several variants of the Gaussian expansion of the forbidden

state wave functions are shown in Tables 2.3 and 2.4. For the sake of conve-

nience we use an identical value of the projecting constant λf for all forbidden

states. In all three tables the symbol ”< P >” denotes the total admixture of

the forbidden states to the energy of the 3α-system:

< P >=< Ψs | λ(P̂1 + P̂2 + P̂3) | Ψs > . (2.18)

From Tables 2.3 and 2.4 one can see a reasonable saturation of the energy

levels of the 12C nucleus when increasing the projecting constant λ to the infinity
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for a given set of approximation of the two-body forbidden states. However,

beginning from the value of the projecting constant λ ≥ 103 MeV the ground

and first excited 2+
1 states energies of the 12C nucleus begin to display a high

sensitivity to the description of the two-body forbidden states. Moreover the

energy decreases sharply when increasing the value of the projecting constant

from 104 to 105. The unexpected results when increasing the parameter λ is that

the second 0+
2 state with the energy -0.422 MeV at λ = 104 MeV becomes the

lowest state. In other words, the ground state is lost. The same situation can

be observed in the 2+-sector. This unusual behavior of the energies was found

in our work more than ten years ago [46]. To examine this unusual behavior

Table 2.4.

The energy spectrum of the (Jπ, T ) = (2+, 0) levels of the 12C nucleus

in MeV for the several sets of Gaussian approximations of the αα

forbidden states at several values of the projecting constant

N λ (MeV) 103 104 105 106 107 108

≤ 2 E1 -17.19 -16.15 -14.55 -12.103 -11.176 -11.04

E2 0.944 0.95 0.952 0.965 1.022 1.079

< P > 0.923 0.95 1.024 0.807 0.136 2.E-2

3 E1 -17.213 -15.665 -11.142 -5.953 -3.950 -3.80

E2 1.029 1.032 1.034 1.047 1.141 1.19

< P > 1.024 0.918 2.842 1.495 5.E-2 8.5E-3

4 E1 -17.433 -15.725 -8.578 1.042 1.082 1.157

E2 1.029 1.032 1.034 1.694 2.656 3.038

< P > 1.075 1.095 5.85 9.1E-3 2.9E-2 2.8E-2

7 E1 -17.361 -15.649 -8.243 1.042 1.086 1.162

E2 1.030 1.032 1.034 1.475 2.524 2.643

< P > 1.062 1.127 5.974 1.2E-2 3.1E-2 2.7E-2

of the three α energy, we look on the values of the admixture of the forbidden

states in the last row of Table 2.3. We can see that this variable decreases
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from 30 MeV for the λ = 10 MeV up to 1.130 MeV for λ = 1000 MeV, that is

normal. However, after this value the variable < P > begins to increase, which

means that admixture of forbidden states is going up. We found minimum of

< P >=1.032 MeV at λ =1450 MeV. This point is the beginning of the high

sensitivity of the 3 α energy to the description of the Pauli forbidden states.

For this value E(0+
1 ) = −19.763 MeV and E(2+

1 ) = −16.931 MeV.

As was found by Fujiwara and soauthors [136], the high sensitivity of the

3α energy on the two-body Pauli forbidden states results in the so-called three-

body ”almost forbidden state”.

It can be shown explicitly [128], that the complete three-body projector

Eq. (2.10) and the sum of the two-body projectors Γ̂ = P̂1 + P̂2 + P̂3 have

identical kerns (eigenstates with the zero eigenvalue), which define the 3-body

allowed subspace of the full Hilbert space. This means that one can expand a

probe wave function for the 3α Schrödinger equation over the eigenfunctions

of the operator Γ̂ with the zero eigenvalue. In this way one can develop an

alternative direct method for the orthogonalization in the three-body problem.

Fujiwara et al have used a different way to come to the same method: as the

two body projectors P̂i, i=1, 2, 3 are positive operators, then the system of

equations P̂i = 0, i=1, 2, 3, is equivalent to the relation Γ̂ = P̂1 + P̂2 + P̂3 = 0.

When applying the direct orthogonalization method, Fujiwara et al. for

the first time found a three-body ”almost forbidden state”. We have applied

this method and found such a state with an energy E0 = 1.1847E − 4 MeV.

If we describe it and other eigenstates of the operator Γ with eigenvalues E >

E0 as forbidden states (if we remove these states from the allowed subspace),

then we come to the weak binding E=-0.645 MeV for the 3α -ground state.

But if we describe this ”almost forbidden state” as belonging to the allowed

functional space, then we have the 3α-energy value at about E=-20 MeV which

was obtained above in our method at the extremum point of λ = 1450 MeV

and which is close to the results of the microscopic calculations.
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In Table 2.5 we give the final results for the energy spectrum of the Bor-

romean 12C nucleus in the macroscopic 3α model. The results with the BFW

potential correspond to the allowed ”almost forbidden state” and are close to

the results of the semi-microscopic and microscopic studies [137]. The results

for the ground and first excited 2+
1 states are far from the experimental data,

which means that the local potential models are not able to describe well these

compact states. But, the astrophysical significant 0+
2 state is reproduced quite

well.

As noted above, the existence of the ”almost forbidden state” is the result

of the high sensitivity of the compact ground 0+
1 and first excited 2+

1 states

energies of the 3α system on the two-body forbidden states. The authors of

Ref. [136] suggested to use microscopically defined two-body α − α forbidden

states instead of forbidden states fixed from the deep α − α-potential. This

way, as stated by the authors of this reference, strongly separates the three-

body functional space into two orthogonal subspaces, an allowed and forbidden

states. And this way does not result any ”almost forbidden state”.

We suggest another possible solution of the 3α problem, to fit parameters

of the deep potential to the αα-forbidden states fixed from the microscopic

calculations. Then one can check a description of the phase shifts in S- and

D-waves.

Table 2.5.

The energy spectrum of the 12C nucleus calculated in the VGM

with the Ali-Bodmer and BFW α− α potentials in MeV

(Jπ, T ) ABd0 ABd BFW Exp [42]

(0+
1 , 0) -0.584266 -1.523 -19.763 -7.275

(0+
2 , 0) -0.50189 0.3796

(2+
1 , 0) -16.931 -2.836
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2.3. Conclusion

The energy spectrum of the 12C nucleus with (Jπ, T ) = (0+, 0) and (Jπ, T ) =

(2+, 0) was studied in the framework of the cluster potential model using dif-

ferent αα-potentials: the Ali-Bodmer potential with a strong repulsive core

and a deep potential of Buck, Friedrich and Wheatley with forbidden states

in the S and D waves. For the elimination of forbidden states the method of

orthogonalising pseudo-potentials (OPP) has been used.

The numerical results indicate that a local Ali-Bodmer αα -potential with

a repulsive core yields a very weak binding for the 3α-system.

It was shown that the energies of the (0+
1 , 0) and (2+

1 , 0) states of the 12C

nucleus with a compact shell-model like structure display a very high sensitivity

to the description of the two-body forbidden states. This strong sensitivity of

the energy values directly results in an ”almost forbidden state” in the 3α

functional space. Whether this ”almost forbidden state” allowed or forbidden,

the 3α-system has a strong or weak binding. This very interesting phenomena

shows an importance of the microscopical description of the Pauli principle

when studying a structure of the 3α-system.

The results with allowed ”almost forbidden states” are close to the results

of the semi-microscopic and microscopic studies.
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III. THREE-BODY CONTINUUM STATES ON A

LAGRANGE-MESH

As was noted in chapter I , the hyperspherical harmonic method (HHM) is

well adapted to three-body systems [65, 66]. 1 The six Jacobi coordinates are

replaced by five angles, and a single dimensional coordinate, the hyperradius.

The HHM transforms the three-body Schrödinger equation into a set of coupled

differential equations depending on the hyperradius. In previous chapter we

have compared the three methods (HHM, VGM and Lagrange mesh) in the 3

α bound state problem. The HHM has been also applied to many exotic nuclei.

In the Ref. [91] we extended the formalism of Ref. [67] to three-body continuum

states. The R-matrix theory allows the use of a variational basis to describe

unbound states. It is based on an internal region, where the wave function

is expanded over the basis, and on an external region, where the asymptotic

behavior can be used.

In two-body systems, the Lagrange-mesh technique associated with the R-

matrix formalism has been applied in single- [138] and multi-channel [139,140]

calculations. Our goal is to extend the method to three-body systems within the

HHM by using the propagation techniques [90]. Another development concerns

the application to charged systems. Many exotic nuclei are unbound, even in

their ground states, due to the Coulomb force. We show applications to the

α+n+n and 12Be+n+n systems, for which two-body potentials are available in

the literature. The mirror systems are also investigated.

We first summarize the three-body formalism, and present the R-matrix

method. Then the method is applied to 6He and 14Be, with the mirror systems.

1This chapter is based on the results of Ref. [91]
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3.1. Three-body continuum states

3.1.1. Hamiltonian and wave functions

Let us consider three particles with mass numbers Ai (in units of the nucleon

mass mN), and space coordinates ri. A three-body Hamiltonian is given by

H =
3∑

i=1

Ti +
3∑

i>j=1

Vij(rj − ri), (3.1)

where Ti is the kinetic energy of nucleon i, and

Vij is a nucleus-nucleus potential. We neglect three-body forces in this presen-

tation.

The HHM is known to be an efficient tool to deal with three-body systems.

This formalism is well known, and we refer to Refs. [63,66] for detail. Starting

from coordinates ri, we define the Jacobi coordinates xk and yk (k = 1, 2, 3)

as was done in chapter 2 (see Eq. (2.2) and Ref. [67]). The hyperradius ρ and

hyperangle αk are then defined as

ρ2 = x2
k + y2

k,

αk = arctan
yk

xk
. (3.2)

The hyperangle αk and the orientations Ωxk
and Ωyk

provide a set of angles

Ω5k. In this notation the kinetic energy reads [67,91]

Tρ =
3∑

i=1

Ti − Tcm = − h̄2

2mN

(
∂2

∂ρ2 +
5

ρ

∂

∂ρ
− K2(Ω5k)

ρ2

)
, (3.3)

where Tcm is the c.m. kinetic energy, and

K2 is a five-dimensional angular momentum whose eigenfunctions (with eigen-

values K(K + 4)) are given by [91,141]
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Y`x`y

KLML
(Ω5) = φ

`x`y

K (α)
[
Y`x

(Ωx)⊗ Y`y
(Ωy)

]LML ,

φ
`x`y

K (α) = N `x`y

K (cos α)`x(sin α)`yP
(`y+1

2 ,`x+1
2)

n (cos 2α), (3.4)

where

N `x`y

K a normalization factor [66],

K is the hypermomentum,

(`x, `y) are the orbital momenta associated with (x,y),

n is a positive integer defined by

n = (K − `x − `y)/2, (3.5)

P
(α,β)
n (x) is a Jacobi polynomial. Introducing the spin component χSMS yields

the hyperspherical function with total spin J

YJM
γK (Ω5) =

[
Y`x`y

KL (Ω5)⊗ χS
]JM

, (3.6)

where index γ stands for (`x, `y, L, S).

A wave function ΨJMπ, solution of the Schrödinger equation associated with

Hamiltonian Eq. (3.1), is expanded over basis functions Eq. (3.6) as [91]

ΨJMπ(ρ, Ω5) = ρ−5/2
∑

γK

χJπ
γK(ρ) YJM

γK (Ω5), (3.7)

where π = (−1)K is the parity of the three-body relative motion,

χJπ
γK(ρ) are hyperradial wave functions which should be determined. Rigorously,
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the summation over (γK) should contain an infinite number of terms. In prac-

tice, this expansion is limited by a maximum K value, denoted as Kmax. For

weakly bound states, it is well known that the convergence is rather slow, and

that large Kmax values must be used. Typically 100− 200 terms are necessary

for realistic Kmax values.

The radial functions χJπ
γK(ρ) are derived from a set of coupled differential

equations [91]

[
− h̄2

2mN

(
d2

dρ2 −
LK(LK + 1)

ρ2

)
− E

]
χJπ

γK(ρ)

+
∑

K ′γ′
V Jπ

Kγ,K ′γ′(ρ) χJπ
γ′K ′(ρ) = 0, (3.8)

with LK = K + 3/2. The potential terms are given by the contribution of the

three nucleus-nucleus interactions

V Jπ
Kγ,K ′γ′(ρ) =

3∑
i=1

(V
Jπ(Ni)
Kγ,K ′γ′(ρ) + V

Jπ(Ci)
Kγ,K ′γ′(ρ)), (3.9)

where we have explicitly written the nuclear (N) and Coulomb (C) terms.

Assuming the use of (x1, y1) for the coordinate set, the contribution i = 1

is directly determined from

V
Jπ(1)
Kγ,K ′γ′(ρ) =

∫
YJM∗

γK (Ω5) V23

(
ρ cos α√

µ23

)
YJM

γ′K ′(Ω5)dΩ5, (3.10)

where µij = AiAj/(Ai +Aj). The terms i = 2, 3 are computed in the same way,

with an additional transformation using the Raynal-Revai coefficients [141].

Definition Eq. (3.10) is common to the nuclear and Coulomb contributions. In-

tegrations over Ωx and Ωy are performed analytically, whereas integration over

the hyperangle α is treated numerically. For the Coulomb potential, the ρ de-

pendence is trivial; we have
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3∑
i=1

V
Jπ(Ci)
Kγ,K ′γ′(ρ) = zJπ

Kγ,K ′γ′
e2

ρ
(3.11)

where zJπ
γK,γ′,K ′ is an effective charge, independent of ρ, and calculated numeri-

cally from Eq. (3.10) and from Raynal-Revai coefficients [142, 143]. Examples

of matrices zJπ are given in Ref. [142] for the α+p+p system. Knowing the

analytical ρ-dependence of the potential is crucial for continuum states (see be-

low). Notice that, to derive Eq. (3.11), one assumes the 1/|rj − ri| dependence

of the Coulomb potential. Using a point-sphere definition is straightforward, as

the difference can be included in the nuclear part.

3.1.2. Asymptotic behaviour of the potential

For small ρ values the potential must be determined by numerical integra-

tion of Eq. (3.10). However, analytical approximations can be derived for large

ρ values. For the Coulomb interaction, definition Eq. (3.11) is always valid. Let

us now consider the nuclear contribution. After integration over Ωx and Ωy, a

matrix element between basis states Eq. (3.4) is written as [91]

V
`x`y,`′x`′y
KL,K ′L′ (ρ) = δLL′δ`y`′y

∫ π/2

0
φ

`x`y

K (α)VN

(
ρ cos α√

µ23

)
φ

`′x`y

K ′ (α) sin2 α cos2 αdα

= N `x`y

K N `′x`y

K ′ δLL′δ`y`′y
1

ρ3

∫ ρ

0
P

(`y+1
2 ,`x+1

2)
n

(
2
u2

ρ2 − 1

)
VN

(
u√
µ23

)

× P
(`y+1

2 ,`′x+1
2)

n′

(
2
u2

ρ2 − 1

)(
1− u2

ρ2

)`y+1
2
(

u

ρ

)`x+`′x
u2du. (3.12)

To deal with the spin, the coupling order in Eq. (3.6) is modified in order
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to introduce the total spin of the interacting particles jx = `x + S. This is

achieved with standard angular-momentum algebra, involving 6j coefficients.

If the tensor force is not included, we also have `x = `′x. For large ρ values,

and if the potential goes to zero faster than 1/u2, we can use the following

expansions [91,144]

P (α,β)
n (2x− 1) =

n∑
m=0

c(α,β)
m xm,

c(α,β)
m =

(−1)n+m

m!(n−m)!

Γ(β + n + 1)Γ(α + β + n + m + 1)

Γ(β + m + 1)Γ(α + β + n + 1)
,

(1− x)α =
∞∑

m=0


 α

m


 (−x)m, (3.13)

and we end up with the asymptotic expansion of the potential

V
`x`y,`′x`′y
KL,K ′L′ (ρ) ≈ δLL′δ`y`′y

1

ρ`x+`′x+3

∞∑

k=0

vk

ρ2k
, (3.14)

where

vk = N `x`y

K N `′x`y

K ′

∫ ∞

0
u`x+`′x+2k+2V

(
u√
µ23

)
du

×
∑

m1,m2

(−1)k−m1−m2


 `y + 1

2

k −m1 −m2


 c

(`y+1
2 ,`x+1

2)
m1 c

(`y+1
2 ,`′x+1

2)
m2 . (3.15)

Owing to the finite range of the potential, the upper limit in the integrals

Eq. (3.12) has been replaced by infinity. Up to a normalization factor, the con-

tribution of each k value is a moment of the potential. As it is well known [89],

the leading term is v0/ρ
3 for `x = `′x = 0. Expansion Eq. (3.14) is carried out

for the three nucleus-nucleus potentials with additional Raynal-Revai trans-

formations for the second and third terms. Analytic expansions of potentials
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Eq. (3.10) are finally obtained with [91]

3∑
i=1

V
Jπ(Ni)
Kγ,K ′γ′(ρ) ≈ 1

ρlx+l′x+3

∞∑

k=0

ṽk

ρ2k
, (3.16)

where coefficients ṽk are obtained from vk after Raynal-Revai and spin coupling

transformations.

Let us evaluate coefficients ṽk for 6He=α+n+n, with the α − n potential

taken from Kanada et al. [145]. Coefficients ṽ0 to ṽ4 are given in Table 3.1 for

J = 0+. We also provide the amplitude of the centrifugal term

vcent =
h̄2

2mN
(K + 3/2)(K + 5/2), (3.17)

which depends on ρ as 1/ρ2. It is clear from Table 3.1 that coefficients ṽk are

large and increasing with k. Integrals in Eq. (3.15) must be computed with

a high accuracy. Special attention must be paid to partial waves involving

two-body forbidden states. In this case, we use a supersymmetry transform

of the potential [24], in order to remove forbidden states in the three-body

problem. This transformation is carried out numerically, and the resulting

potential presents a singularity at short distances.

From Table 3.1, we evaluate the ρ value where the nuclear part is negligible

with respect to the centrifugal term. In other words, ρmax is defined as

|ṽ0|
ρ3

max

= ε× vcent

ρ2
max

. (3.18)

Values of ρmax are given in Table 3.1 by assuming ε = 0.01. In general they

are larger for low K values for two reasons: (i) the centrifugal term is of course

lower, and (ii) low partial waves generally involve forbidden states which lead

to singularities in the potential, and hence to larger values of ṽ0.

From the ρmax values displayed in Table 3.1, it is clear that the channel

radius a of the R matrix must be very large. Using basis functions valid up to
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Table 3.1.

Coefficients ṽ0 to ṽ4 in 6He for J = 0+, L = S = 0, and for typical

partial waves (energies are expressed in MeV and lengths in fm).

The bracketed values represent the power of 10, and γ = `x, `y.

K, γ K ′, γ′ ṽ0 ṽ1 ṽ2 ṽ3 ṽ4 vcent ρmax

0,0,0 0,0,0 3.40(3) -7.46(3) -2.02(4) -1.53(5) -1.78(6) 78 4370

4,0,0 4,0,0 1.18(3) -1.20(5) 7.31(6) -2.13(8) 2.87(9) 741 160

8,0,0 8,0,0 -2.59(3) -1.19(5) 5.46(7) -6.66(9) 4.98(11) 2068 125

4,2,2 4,2,2 2.61(4) -1.27(6) 5.40(7) -1.39(9) 1.81(10) 741 3520

8,2,2 8,2,2 5.49(4) -7.82(6) 1.06(9) -1.02(11) 6.78(12) 2068 2660

0,0,0 4,0,0 -3.41(3) 8.04(4) -1.09(6) 4.27(6) 1.43(7)

0,0,0 8,0,0 1.19(3) -1.08(5) 6.21(6) -1.75(8) 2.33(9)

0,0,0 4,2,2 9.62(3) -2.41(5) 3.47(6) -1.37(7) -4.61(7)

0,0,0 8,2,2 1.40(4) -9.90(5) 4.80(7) -1.30(9) 1.71(10)

these distances would require tremendous basis sizes. This is solved by using a

propagation technique which is presented in next section.

In the analytical expansion of the potential, the maximum value kmax is

determined from the requirement

ṽkmax+1

a2kmax+2 ¿
ṽkmax

a2kmax
. (3.19)

This yields typical values kmax ≈ 3−4, depending on the system and on the

partial wave.



49

3.1.3. Three-body R-matrix

Principle of the R matrix

The R-matrix theory is well known for many years [88]. It allows matching a

variational function over a finite interval with the correct asymptotic solutions

of the Schrödinger equation. We summarize here the main ingredients of the

R-matrix theory and emphasize its three-body aspects. The R-matrix method

is based on the assumption that the configuration space can be divided into

two regions: an internal region, with radius a, where the solution of (3.8) is

given by some variational expansion, and an external region where the exact

solutions of Eq. (3.8) are known. This is formulated as

χJπ
γK,int(ρ) =

N∑
i=1

cJπ
γKi ui(ρ), (3.20)

where the N functions ui(ρ) represent the variational basis, and

cJπ
γKi are the corresponding coefficients. In the external region, it is assumed

that only the Coulomb and centrifugal potentials do not vanish; we have, for

an entrance channel γ′K ′,

χJπ
γK,ext(ρ) = AJπ

γK

[
H−

γK(kρ)δγγ′δKK ′ − UJπ
γK,γ′K ′H+

γK(kρ)
]
, (3.21)

where the amplitude is chosen as

AJπ
γK = iK+1(2π/k)5/2, (3.22)

and UJπ is the collision matrix, and

k =
√

2mNE/h̄2 is the wave number [89]. If the three particles do not interact,

Eq. (3.21) is a partial wave of a 6-dimension plane wave [141]
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exp [i(kx.x + ky.y)] =
(2π)3

(kρ)2

∑

`x`yLMLK

iKJK+2(kρ)

×Y`x`y

KLML
(Ω5ρ)Y`x`y∗

KLML
(Ω5k). (3.23)

For charged systems, we have

H±
γK(x) = GK+ 3

2
(ηγK , x)± iFK+ 3

2
(ηγK , x), (3.24)

where GK+3/2 and FK+3/2 are the irregular and regular Coulomb functions, re-

spectively [146]. The Sommerfeld parameters ηγK are given by

ηγK = zJπ
γK,γK

mNe2

h̄2k
, (3.25)

where zJπ is the effective-charge matrix Eq. (3.11); η therefore depends on the

channel. Notice that we neglect non-diagonal terms of the Coulomb potential.

This is in general a good approximation as these terms are significantly smaller

than diagonal terms [142, 143]. For neutral systems, the ingoing and outgoing

functions H±
γK(x) do not depend on γ and are defined as

H±
γK(x) = ±i

(πx

2

)1/2
[JK+2(x)± iYK+2(x)] , (3.26)

where Jn(x) and Yn(x) are Bessel functions of first, and second kind, respec-

tively. The phase is chosen to recover the plane wave in absence of interaction

(U=I).

For bound states (E < 0), the external wave function is written as

χJπ
γK,ext(ρ) = BJπ

γK W−ηγK ,K+2(2κρ), (3.27)
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where BJπ
γK is the amplitude (κ2 = −2mNE/h̄2),

Wab(x) is a Whittaker function. For neutral systems, we have

χJπ
γK,ext(ρ) = CJπ

γK (κρ)1/2KK+2(κρ), (3.28)

where Kn(x) is a modified Bessel function.

The Bloch-Schrödinger equation

The basic idea of the R-matrix theory is to solve Eq. (3.8) over the internal

region. To restore the hermiticity of the kinetic energy, one solves the Bloch-

Schrödinger equation [91]

(H + L(L)− E) ΨJMπ = L(L)ΨJMπ, (3.29)

with the Bloch operator L(L) defined as

L(L) =
h̄2

2mN

∑

γK

|YJM
γK > δ(ρ− a0)

1

ρ5/2

(
∂

∂ρ
− LγK

ρ

)
ρ5/2 < YJM

γK |, (3.30)

where L is a set of arbitrary constants LγK . In the following, we assume LγK = 0

for positive energies. Formulas presented in this subsection are given for any

channel radius a0, which can be different from a, defined in 2.3.1.

Let us define matrix CJπ as [91]

CJπ
γKi,γ′K ′i′ =< uiYJM

γK |H + L(L)− E|ui′YJM
γ′K ′ >I , (3.31)

where subscript I means that the matrix element is evaluated in the internal

region only, i.e. for ρ ≤ a0. Using the partial-wave expansion Eq. (3.7) and

the continuity of the wave function at ρ = a0, we obtain the R-matrix at a0

from [91]

RJπ
γK,γ′K ′(a0) =

h̄2

2mNa0

∑

i,i′
ui(a0)

(
CJπ

)−1
γKi,γ′K ′i′ ui′(a0). (3.32)
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R-matrix propagation and collision matrix

As shown in previous section, the nuclear potential extends to very large

distances, even for short-range nucleus-nucleus interactions. In other words,

the asymptotic behaviour Eq. (3.21) is not accurate below distances which may

be as large as 1000 fm or more. This is a drawback of the hyperspherical

method, where even for large ρ values, two particles can still be close to each

other and contribute to the three-body matrix elements.

It is clear that using basis functions valid up to distances of 1000 fm is not

realistic, as the size of the basis would be huge. On the other hand, using a low

channel radius (typically 30 ∼ 40 fm) would keep the basis size in reasonable

limits, but would not satisfy the key point of the R-matrix theory, namely that

the wave function has reached its asymptotic behaviour at the channel radius

a0. This problem can be solved with propagation techniques, well known in

atomic physics [90]. The idea is to use a0 as a starting point for the R matrix;

its value is small enough to allow reasonable basis sizes. The R matrix is then

propagated from a0 to a, where the Coulomb asymptotic behaviour Eq. (3.21) is

valid. Between a0 and a, the wave functions χJπ(ρ) are still given by Eq. (3.8),

but with the potential replaced by its (analytical) asymptotic expansion.

More precisely, the internal wave functions in the different intervals are given

by

χJπ
γK,int(ρ) =

N∑

i=1

cJπ
γKi ui(ρ) for ρ ≤ a0,

= χ̃Jπ
γK(ρ) for a0 ≤ ρ ≤ a, (3.33)

where χ̃γK(ρ) are solutions of Eq. (3.8) with the analytical expansion Eq. (3.16)

of the potential term.

The R matrix is first computed at a0 with Eq. (3.32) (typical values are

a0 ≈ 20−40 fm). Then we consider N0 sets of initial conditions for χ̃(ρ), where
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N0 is the number of γK values (from now on we drop the Jπ index for clarity).

We combine these sets as matrix χ̃0(ρ), and choose

χ̃0(a0) = I, (3.34)

where I is the unit matrix.

According to the definition of the R matrix [88], we immediately find the

derivative at a0

χ̃0
′(a0) =

1

a0
R−1(a0)χ̃0(a0) =

1

a0
R−1(a0). (3.35)

Knowing functions χ̃0γK and their derivatives at a0, they are then prop-

agated until a by using the Numerov algorithm [147], well adapted to the

Schrödinger equation. The analytical form Eq. (3.16) of the potential is used,

with a summation limited to a few k values. The R matrix at a is then deter-

mined by using Eq. (3.35) with χ̃0(a) and χ̃′
0(a). We have

R(a) =
1

a
χ̃0(a)

(
χ̃0

′(a)
)−1

. (3.36)

Notice that the propagated R matrix Eq. (3.36) does not depend on the choice of

χ̃0(a0). In Ref. [90], the propagation is performed through the Green function

defined in the intermediate region, and expanded over a basis. The method

presented here uses the Numerov algorithm, and does not rely on the choice of

a basis. The analytical form of the potential in this region makes calculations

fast and accurate.

Finally the collision matrix is obtained from the R matrix at the channel

radius a with [91]

UJπ =
(
ZJπ?

)−1
ZJπ, (3.37)

and

ZJπ
γK,γ′K ′ = H−

γK(ka)δγγ′δKK ′ − ka(H−
γK(ka))′RJπ

γK,γ′K ′(a), (3.38)

where the derivation is performed with respect to ka.
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Lower values of the channel radius a can be used by employing the Gailitis

method [148]. In this method the asymptotic forms Eq. (3.24) are general-

ized with the aim of using them at shorter distances. This means that the

propagation should be performed in a more limited range (typical values for

a are a ∼ 200 − 400 fm). However this does not avoid propagation which,

in any case, is very fast. In addition, the Gailitis method cannot be applied

to charged systems, as it assumes from the very beginning that the coupling

potentials decrease faster than 1/ρ.

The extension of the R-matrix formalism to bound states is well known

for two-body systems [149]. Basically, the LγK constants are defined so as to

cancel the r.h.s. of Eq. (3.29). Then, the problem is reduced to a matrix

diagonalization with iteration on the energy [149,150].

Wave functions

Once the collision matrix is known, the internal wave function Eq. (3.33)

can be determined in both intervals. Although the choice of χ̃0(a0) is arbitrary,

functions χ̃(ρ) entering Eq. (3.33) do not depend on that choice. In the inter-

mediate region a0 ≤ ρ ≤ a, functions χ̃(ρ) and χ̃0(ρ) are related to each other

by a linear transformation

χ̃(ρ) = χ̃0(ρ)M . (3.39)

Matrix M is deduced by using the asymptotic behaviour Eq. (3.21) at ρ = a,

χ̃(a) = χ̃0(a)M = χext(a), (3.40)

where χext(a) is the matrix involving all entrance channels [see Eq. (3.21)]. It

depends on the collision matrix.

Coefficients cJπ
γKi defining the internal wave function in the interval ρ ≤ a0

are finally obtained by
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cJπ
γKi =

h̄2

2mN

∑

γ′K ′i′

(
C−1

)Jπ

γKi,γ′K ′i′

(
dχ̃Jπ

γ′K ′

dρ

)

ρ=a0

ui′(a0). (3.41)

The Lagrange-mesh method

Up to now, the basis functions ui(ρ) are not specified. We use here the

Lagrange-mesh method which has been proved to be quite efficient in two-

body [151] and three-body [67] systems. Notice however that its application to

three-body continuum states is new.

When dealing with a finite interval, the N basis functions ui(ρ) are defined

as [138]

ui(ρ) = (−1)N−i

(
1− xi

a0xi

)1/2
ρPN(2ρ/a0 − 1)

ρ− a0xi
, (3.42)

where the xi are the zeros of a shifted Legendre polynomial given by

PN(2xi − 1) = 0. (3.43)

The basis functions satisfy the Lagrange condition

ui(a0xj) = (a0λi)
−1/2δij, (3.44)

where the λi are the weights of the Gauss-Legendre quadrature corresponding

to the [0,1] interval, i.e. half of the weights corresponding to the traditional

interval [-1,1].

The main advantage of the Lagrange-mesh technique is to strongly simplify

the calculation of matrix elements Eq. (3.31) if the Gauss approximation is

used. Matrix elements of the kinetic energy (T + L) are obtained analytically

[138]. Integration over ρ provides matrix elements of the potential by a single

evaluation of the potential at ρ = a0xi. The potential matrix is diagonal with

respect to i and i′.



56

In Ref. [67], the Lagrange-mesh technique has been applied to bound states

of three-body systems. As the natural interval ranges from zero to infinity,

the Laguerre mesh was used. It was shown that the Gauss quadrature is quite

accurate for the matrix elements, and that computer times can be strongly

reduced.

3.2. Applications

3.2.1. Conditions of the calculations

Here we apply the method to the 6He and 14Be nuclei. The α-n and 12Be-n

interactions are chosen as local potentials. They contain Pauli forbidden states

(one in ` = 0 for α-n, and one in ` = 0, 1 for 12Be-n) which should be removed

for a correct description of three-body states [67, 89]. For bound states, two

methods are available: the use of a OPP method [135], and a supersymmetric

transformation of the nucleus-nucleus potential [24]. Although both approaches

provide different wave functions, spectroscopic properties are similar [67]. For

unbound systems, it turns out that the projector technique is quite difficult to

apply with a good accuracy. Expansions similar to Eq. (3.16) for the projection

operator provide non-local potentials. Consequently, all applications presented

here are obtained with supersymmetric partners of the nucleus-nucleus poten-

tials.

As collision matrices can be quite large, it is impossible to analyze all ele-

ments. To show the essential information derived from the collision matrix, we

rather present some eigenphases. Those presenting the largest variation in the

considered energy range are shown.

Analyzing the collision matrix in terms of eigenphases raises two problems.

First, it is in general not obvious to link the eigenphases at different energies.



57

As eigenphases cannot be associated with given quantum numbers, there is no

direct way to draw continuous eigenphases. The procedure can be strongly

improved by analyzing the eigenvectors. Starting from a given energy, eigen-

phases for the next energy are chosen by minimizing the differences between

the corresponding eigenvectors.

A second problem associated with eigenphases arises from the Coulomb

interaction. As matrix elements of the Coulomb force are not diagonal, the

corresponding phase shifts do not appear in a simple way, as in two-body col-

lisions. A new method was suggested by D. Baye in Ref. [91]. According to

this method, in order to extract the nuclear contribution UN from the total

collision matrix U , we perform two calculations: a full calculation providing

U , and a calculation without the nuclear contribution, providing the Coulomb

collision matrix UC . Then we define the nuclear collision matrix UN by

U = UC
1/2UNUC

1/2. (3.45)

As U and UC are symmetric and unitary, the same properties hold for UN .

Examples of Coulomb phase shifts will be given in the next sections.

3.2.2. Application to 6He and 6Be

The conditions of the calculation are those of Ref. [67]. The α-n potential

Vα−n has been derived by Kanada et al. [145]. It contains spin-orbit and parity

terms. The n-n potential is the Minnesota interaction [152]. As bare nucleus-

nucleus potentials cannot be expected to reproduce the 6He ground-state energy

with a high accuracy, the potential Vα−n was renormalized by a factor λ = 1.051

(note that this value was misprinted in Ref. [67]). This value reproduces the 6He

experimental energy −0.97 MeV and provides 2.44 fm for the r.m.s. radius [91].

The convergence with respect to Kmax and to the Lagrange-mesh parameters

has already been discussed in Ref. [67].
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Fig. 3.1. α+n+n phase shifts (J = 0+) for channel radii a0 = 20 fm

(N = 20) and a0 = 30 fm (N = 30), and for different partial waves.

Solid lines are obtained with propagation up to a = 250 fm of the R

matrix (curves corresponding to different a0 are undistinguishable),

and dashed lines without propagation.
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Let us first illustrate the importance of the propagation technique. In

Fig. 3.1, we plot some elements of the J = 0+ collision matrix under differ-

ent conditions. In each case, we compare the phase shifts for two channel radii:

a0 = 20 fm and a0 = 30 fm. The calculation is performed with and without

propagation. For K = 0, reasonable values can be obtained without propaga-

tion. However, for larger K values (K = 8 is displayed with `x = `y = 0 and

`x = `y = 4), the channel radius should be quite large to reach convergence.

To keep the same accuracy, the number of basis functions should be increased.

However, one basis function per fm is a good estimate, and this leads to unre-

alistically large basis sizes. This convergence problem is due to the long range

of the potential. The propagation technique (performed here up to a = 250 fm)

allows us to get a very high stability (better than 0.1◦ at all energies) even for

rather small channel radii. Consequently calculations with high K values are

still feasible.

To illustrate the diagonalization of the collision matrix, we compare in

Fig. 3.2 the diagonal phase shifts with the corresponding eigenphases. The

diagonal phase shifts correspond to the collision matrix before diagonalization,

while the eigenphases correspond to the diagonalized collision matrix. We have

selected a particular case, with J = 2+, and Kmax = 2. With these conditions

the collision matrix is 4×4, and presents a narrow resonance near 2 MeV. In the

upper part of Fig. 3.2, we plot the diagonal phase shifts. One of them presents

a 180◦ jump, characteristical of narrow resonances. This resonant behaviour is

also observable in two other partial waves. After diagonalization of the collision

matrix (Fig. 3.2, lower part) the resonant behaviour shows up in one eigenphase

only. The three other eigenphases smoothly depend on energy.

The convergence with respect to Kmax is illustrated in Fig. 3.3 with the

J = 0+ eigenphases. It turns out that, at low energies, high hypermomenta are

necessary to achieve a precise convergence. However, above 4 MeV, Kmax = 20

is sufficient to obtain an accuracy of 2◦.
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Figure 3.4 gives the eigenphases for J = 0+, 1−, 2+ in 6He and 6Be (Kmax

is taken as 24, 19 and 16, respectively). As expected, the 2+ phase shift of

6He presents a narrow resonance. The theoretical energy (about 0.2 MeV) is

however underestimated as the experimental value [153] is E = 0.82 MeV. In

order to provide meaningful properties for this state, we have readjusted the

scaling factor to λ = 1.020, which provides the correct energy. The 0+ and 1−

phase shifts show broad structures near 1.5 MeV. Similar phase shifts have been

obtained by Danilin et al. [154, 155] and by Thompson et al. [89] with other

potentials.

In 6Be, the ground state is found at E = 1.26 MeV with a width Γ = 65 keV

[91]. These values are in reasonable agreement with experiment [153] (E = 1.37

MeV, Γ = 92 ± 6 keV), the width being underestimated by the model due to

the lower energy. Experimentally, a 2+ state is known near E = 3.0 MeV

with a width of Γ = 1.16± 0.06 MeV. These properties are consistent with the

theoretical 2+ eigenphase, which presents a broad structure near E ≈ 4 MeV.

The largest Coulomb eigenphases (J = 0+) are shown as dotted lines in Fig. 3.4.

As expected, the Coulomb interaction plays a dominant role at low energies,

but it cannot be completely neglected even near 10 MeV. Coulomb eigenphases

for other spin values are very similar and therefore are not presented.

3.2.3. Application to 14Be

As shown in previous works [117, 156, 157], a 12Be+n+n three-body model

can provide a realistic description of 14Be. The spectroscopy of the 14Be ground

state has already been investigated in non-microscopic [117, 156–158] and mi-

croscopic [159] models. In Ref. [91] the three-body model was extended to 14Be

excited and continuum states.

The 13Be ground state is expected to be a virtual s wave, with a large and

negative scattering length (as < −10 fm) [160]. In addition, the existence of a
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Fig. 3.4. Eigenphases of 6He and 6Be for different J values (solid
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5/2+ d-state near 2 MeV is well established. These properties can be reproduced

by a 12Be-n potential

V (r) = − V0 + Vs ` · s

1 + exp((r − r0)/a)
, (3.46)

where ` is the relative angular momentum and s the neutron spin. In Eq. (3.46),

r0 = 2.908 fm, a = 0.67 fm, V0 = 43 MeV, Vs = 6 MeV. The range and diffuse-

ness of the Woods-Saxon potential are taken from Ref. [157]. The amplitudes

V0 and Vs provide E(5/2+) = 2.1 MeV, and as = −47 fm, which are consistent

with the data. For the n-n potential, we use the Minnesota interaction, as for

the 6He study.

With these potentials, the 14Be ground state is found at E = −0.16 MeV

[91], which represents an underbinding with respect to experiment (−1.34±0.11

MeV [161]). This calculation has been performed with Kmax = 24, which

ensures the convergence. The underbinding problem is common to all three-

body approaches, and can be solved in two ways. (i) A renormalization factor

λ = 1.08 provides a ground-state energy at −1.30 MeV, i.e. within the ex-

perimental uncertainties. This procedure leads to a slightly bound 13Be ground

state, which might influence the 14Be properties. (ii) A three-body phenomeno-

logical term V (123), taken as in Ref. [89], i.e.,

V
(123)
Kγ,K ′γ′(ρ) = −δKK ′δγγ′ V3/[1 + (ρ/ρ3)

2], (3.47)

reproduces the experimental energy with an amplitude V3 = 4.7 MeV (according

to Ref. [89], we take ρ3 = 5 fm). This potential is diagonal in (K, γ), and is

simply added to the two-body term [see Eqs. (3.10), (3.11)]. In 6He, it was

shown that both readjustments of the interaction provide similar results [67].

However the renormalization factor is larger for 14Be, and both methods will

be considered in the following.

For J = 0+, the calculations have been done with Kmax up to 24. The

energies obtained with renormalization or with the three-body potential are

very similar. This confirms the conclusion drawn for the 6He nucleus [67].
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Spectroscopic properties of 14Be are given in Ref. [91]. The r.m.s. radii of

14Be have been determined with 2.57 fm as 12Be radius. For the ground state,
√

< r2 > = 3.10 fm or 3.14 fm, in nice agreement with experiment (3.16± 0.38

fm, see Ref. [162]). In all cases, the S = 1 component (denoted as PS=1) is small

(< 5%). The decomposition in shell-model orbitals shows that the 0+ state is

essentially (≈ 70%) (2s1/2)
2, with small (2d3/2)

2 and (2d5/2)
2 admixtures [91].

Regarding J = 2+, the hypermomentum can take values up to Kmax = 16,

where the number of partial waves is 172. Going beyond Kmax = 16 would

require too large computer memories. For both potentials, the energy is below

threshold, and the r.m.s. radius is close to 3 fm. A partial-wave analysis

provides 19% of S = 1 admixture, a value much larger than in the ground

state [91].

Three-body eigenphases are displayed in Fig. 3.5. As for the 14Be spec-

troscopy the use of a three-body potential does not qualitatively change the

phase shifts. The 1− phase shift presents two jumps but they cannot be di-

rectly assigned to physical resonances. On the contrary, the 2+ phase shift

shows a narrow resonance near 2 MeV. For the sake of completeness, 12O+p+p

mirror phase shifts are also shown in Fig. 3.5. As expected, no narrow struc-

ture is found. A very broad 0+ resonance shows up near 8 MeV, and should

correspond to the 14Ne ground state.

3.3. Conclusion

In this Chapter, we have extended the three-body formalism of Ref. [67]

to unbound states. As for two-body systems, the Lagrange-mesh technique,

associated with the R-matrix method, provides an efficient and accurate way

to derive collision matrices and wave functions. Compared with two-body sys-

tems, three-body R-matrix approaches are more tedious, owing to the coupling
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potentials which extend to very large distances. This behaviour is inherent

to the use of hyperspherical coordinates which provide three-body potentials

behaving as 1/ρ3, even for short-range two-body interactions. This problem

can be efficiently solved by using propagation techniques. Here, we propagate

the wave function and the R matrix by using the Numerov algorithm. This

formalism has been extended to charged systems.

The 6He system has essentially been used as a test of the method, as most of

its properties are available in the literature. The phase shift analyze has been

performed for the 0+, 1− and 2+ states of the 6He, as well as of the 6Be nucleus.

Application to three-body 12Be+n+n states is new. The analyze of the

12Be+n+n three-body phase shifts indicates the existence of a second narrow

2+ resonance at Ex ≈ 3.4 MeV. Our results is now confirmed by recent experi-

mental study [163] with Ex =3.54(16) MeV.

A limitation of the method is the slow convergence of the phase shifts with

respect to the maximum hypermomentum Kmax. To achieve a full convergence,

values up to Kmax = 20 or more are necessary. This problem is even stronger

for high spins, where the number of partial waves increases rapidly. A possible

solution to this problem would be to apply the Feshbach reduction method [164]

to scattering states. Another possible development would be to use a projec-

tion technique to remove Pauli forbidden states [87]. In that case, asymptotic

potentials (3.15) are non local, which makes the calculation still heavier.

The present model offers an efficient way to investigate bound and unbound

states. In exotic nuclei, most low-lying states are unbound, and a rigorous anal-

ysis requires scattering conditions. The inclusion of the Coulomb interaction

still extends the application field, and is interesting even for non-exotic nuclei.

In this context, an accurate analysis of unbound α+α+α states seems desirable

in view of its strong interest in the triple-α reaction rate [165].
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IV. ANALYSIS OF THE 6He BETA-DECAY INTO THE ALPHA

PLUS DEUTERON CONTINUUM IN A THREE-BODY MODEL

As was discussed in chapter 1, in this chapter we estimate the transition

probabilities per time and energy units for the β decay of the 6He halo nucleus

into α+d continuum channel with the 6He wave function in the α+n+n three-

body cluster potential model [105]. 1 For the description of the structure of the

6He and 6Li nuclei, we use the hyperspherical harmonics method on a Lagrange

mesh developed by the Belgian group (D. Baye, P. Descouvemont, etc.) [67,

166], which was used in the previous chapter for the three-body continuum

studies of halo nuclei. The α+d scattering wave function is treated as factorized

into a deuteron wave function and a nucleus-nucleus scattering state. We will

choose several versions of the central interaction potential: a deep Gaussian

potential [167] which fits both the s-wave phase shift and the binding energy

of the 6Li ground state (1.473 MeV), and potentials obtained by folding the

α + N potential of Voronchev et al. [168]. For the sake of comparison we will

also perform a calculation with a repulsive α + d potential which was used by

the authors of Ref. [100].

4.1. Model

For the β decay process

6He → α + d + e + ν̄, (4.1)

the transition probability per time and energy units is given by the equation

1This chapter is based on the results of Ref. [105,106]
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[169]
dW

dE
=

mec
2

π4vh̄2G
2
βf(Q− E)BGT(E), (4.2)

where me is the electron mass,

v and E are the relative velocity and energy in the center of mass system of the

α and deuteron, and

Gβ = 2.996× 10−12 is the dimensionless β decay constant [170].

The Fermi integral f(Q−E) depends on the kinetic energy Q−E, available for

the electron and antineutrino. The mass difference Q between initial and final

particles is 2.03 MeV. The Gamow-Teller reduced transition probability reads

BGT(E) = 12λ2〈Ψ1;0
αd (E)|

2∑

j=1

tj−sjz|Ψ0;1
6He〉2, (4.3)

where λ = 1.268± 0.002 is the ratio of the axial-vector to vector coupling con-

stants [171],

Ψ1;0
αd (E) is the wave function of the final α + d system with total angular mo-

mentum J = 1 and isospin T = 0,

tj and sj are the isospin and spin operators, respectively, of particle j,

Ψ0;1
6He is the 6He ground state wave function with J = 0 and T = 1,

particles 1 and 2 are the nucleons and 3 is the α cluster.

For the calculation of the β decay transition matrix elements to the 6Li

ground state, we replace the wave function Ψ1;0
αd (E) in Eq. (4.3) by the wave

function of the 6Li ground state.

The 6He ground state wave function contains components with total intrin-

sic spin S = 0 and 1. The total orbital momentum L is equal to S. For the

scattering state, we assume a factorized expression into a deuteron ground state
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wave function and an α + d scattering state derived from a potential model.

We neglect the small D component of the deuteron. Since the total orbital

momentum and parity are conserved, only the l = 0 partial scattering wave

contributes. Hence, only the initial L = S = 0 component of 6He can decay to

α + d. It is convenient to express the Gamow-Teller matrix element with the

help of an effective wave function [101]

Ψeff(R) =

∫
Ψd(r)Ψ6He(r, R)dr, (4.4)

where R = r3 − 1
2(r1 + r2) is the α + d relative coordinate,

r = r2 − r1 is the deuteron relative coordinate.

In this expression, Ψd(r) and Ψ6He(r, R) are the spatial parts of the deuteron

and 6He wave functions, respectively. The Gamow-Teller matrix element reads

BGT(E) = 6λ2
[∫

Ψeff(R)Ψαd(E, R)dR

]2

. (4.5)

The initial three-body wave function is expressed in hyperspherical coordi-

nates. A set of Jacobi coordinates for the three particles with mass numbers

A1 = 1, A2 = 1, and A3 = 4 is defined as (see Eq. (2.2) )

x =
√

µ12r, y =
√

µ(12)3R, (4.6)

where the (dimensionless) reduced masses are given by µ12 = 1/2 and µ(12)3 =

4/3. Equations (5.6) define six coordinates which are transformed to the hy-

perspherical coordinates as

ρ2 = x2 + y2, α = arctan(y/x), (4.7)

where α varies between 0 and π/2 (see Eq. (3.2)). With the angular variables

Ωx = (θx, ϕx) and Ωy = (θy, ϕy), equations (5.9) define a set of hyperspherical

coordinates. This set of coordinates is known to be well adapted to the three-

body Schrödinger equation.
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With the notation Ω5 = (α, Ωx, Ωy), the wave function in the HHM reads

(see chapter 4 and Ref. [67])

ΨJMπ(ρ, Ω5) = ρ−5/2
∑

lxlyLSK

χJπ
lxlyLSK(ρ)YJM

lxlyLSK(Ω5), (4.8)

where lx and ly are the orbital momenta associated with the Jacobi coordinates

x and y, respectively,

χJπ
lxlyLSK are hyperradial functions,

YJM
lxlyLSK are hyperspherical harmonics. The sums in Eq. (4.8) and in the follow-

ing run over even K values only. Since only lx = ly = L = S = 0 contributes,

let us define

ZK(x, y) = (2/3)3/4NKρ−5/2χ0000K(ρ)P
1/2,1/2
K/2 (cos 2α), (4.9)

where NK is a normalisation factor and

P
1/2,1/2
K/2 is a Jacobi polynomial [144] (see Ref. [67] for details).

The deuteron and α+d wave functions are factorized as Ψd(r) = r−1ud(r)Y00(r̂)

and Ψαd(E; R) = R−1uE(R)Y00(R̂), respectively. The radial scattering function

uE has the asymptotic behavior,

uE(R) →
R→∞

F0(kR) cos δ0(E) + G0(kR) sin δ0(E), (4.10)

where k is the wave number of the relative motion,

F0 and G0 are Coulomb functions, and

δ0(E) is the s-wave phase shift at energy E. After integration over angular

parts, the reduced transition probability becomes
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BGT(E) = 6λ2

[∑

K

∫ ∞

0
uE(R)u

(K)
eff (R)dR

]2

. (4.11)

It involves the K-dependent effective functions

u
(K)
eff (R) = R

∫ ∞

0
ZK(x, y)ud(r)rdr, (4.12)

the sum of which forms the radial part of ψeff(R).

Some among the α + d potentials Vαd(R) we are using are obtained by fold-

ing an α + N potential VαN(r). They are given by the equation

Vαd(R) = 〈Ψd(r) | Vαn(|R + 1
2r|) + Vαp(|R + 1

2r|) | Ψd(r)〉, (4.13)

where the integration is performed over the radial and angular parts of the

variable r.

4.2. Results and discussion

The initial α+n+n bound state is calculated as explained in Ref. [67]. The

same nucleon-nucleon interaction is used, i.e.. the central Minnesota interaction

[152] which reproduces the deuteron binding energy and fairly approximates the

low-energy nucleon-nucleon scattering. This potential provides the deuteron

wave function Ψd. The α + N potential is however different from the one

employed in Ref. [67]. Here we employ the α + N potential of Voronchev et

al. [168] with a multiplicative factor 1.035 in order to reproduce the 6He binding

energy. This change of interaction is motivated by the fact that we want to use

the same interaction for the derivation of the α + d folding potential. The

calculations are done with h̄2/2mN = 20.7342 MeV fm2.



72

Since the valence neutron and proton in the 6Li nucleus belong to the (0p3/2)

spectrum, we use the p-wave α+N potential of Ref. [168] when deriving the α+d

folding potential by using Eq. (4.13). The s-wave α+d folding potential derived

from the α + N potential yields two bound states for 6Li with E0 = −19.87

MeV and E1 = −0.83 MeV, respectively. The first one is forbidden by the Pauli

principle and the second one is underbound compared with the experimental

ground-state energy Eexp = −1.473 MeV. The α + N potential of Kanada et

al. [145] employed in Ref. [67] does not yield an α + d folding potential with a

physical bound state in the s wave.

The numerical calculations of the Gamow-Teller matrix elements and of

the transition probability for the β decay of the 6He nucleus are done with

α+d folding potentials, with a phenomenological Gaussian attractive potential

Va [167] and it’s modification Vm, and with a Woods-Saxon repulsive potential

[100]. The simple Gaussian potential Va(r) = V0exp(−α0r
2) with parameters

α0=0.20 fm−1/2 and V0=-76.12 MeV, simultaneously provides the correct 6Li

binding energy (together with a forbidden state) and a fair fit of the low-energy

experimental phase shifts. The modified potential Vm with the parameter values

α0=0.21 fm−1/2 and V0=-79.4 MeV yields the same phase shift and bound state

energy, however it gives a different node position in the S-wave α+d scattering

wave function due-to the Pauli forbidden state. Since the folding potential does

not reproduce the 6Li ground-state energy, we multiply the central part of the

original α + N potential by factor fa = 1.068. The corresponding folding α + d

potential Vf1 puts the physical state at E1 = −1.470 MeV. The s-wave phase

shifts for the different α + d potentials are compared in Fig. 4.1 with phase-

shift analyses [172, 173]. The folding potential Vf1 does not have the same

quality of phase shift description as the simple Gaussian potential. Therefore,

we also choose another factor fb = 1.15 for the folding potential Vf2, which

gives a stronger binding for the 6Li ground state, E1 = −2.386 MeV. From

Fig. 4.1, one can see that the description of the α+d phase shift is poor for the
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Woods-Saxon repulsive potential, which does not bind the 6Li ground state.

0 

30 

60 

90 

120 

150 

0 2 4 6 8 10 

 (
d
e
g
.)

 

E (MeV) 

Va, Vf2 , Vm 

Vr 

Vf1 

Fig. 4.1. s-wave phase shift obtained with different α + d potentials:

folding potentials Vf1 and Vf2 (see text), attractive Gaussian

potential Va [167], and repulsive Woods-Saxon potential Vr [100].

The modified potential Vm is described in the text. Experimental

data are from Refs. [172,173].

The deuteron wave function is calculated over a Lagrange-Laguerre mesh

involving 40 mesh points and a scaling parameter h = 0.25 (see Ref. [67] for

details). A binding energy Ed = 2.20176 is obtained. The integration over r is

done by using the corresponding Gauss-Laguerre quadrature formula with 40

mesh points. This ensures convergent numerical results for the transition prob-

ability with more than needed correct digits. The integration over variable R is

performed with the simple trapezoidal rule with a step 0.05 fm. Later we show

that with this choice of the step of the quadrature formula, convergent results
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for the transition probability are obtained with 600 points, which corresponds

to a maximal α + d relative distance Rmax = 30 fm.

In Fig. 4.2, we display the integrals

I
(K)
E (R) =

∫ R

0
u

(K)
eff (R′)uE(R′)dR′ (4.14)

at the α + d relative energy E = 1 MeV for different K values. They are

obtained by using the α + d potential of Ref. [167]. The Gamow-Teller matrix

element is given by the limit

BGT(E) = 6λ2 lim
R→∞

[∑

K

I
(K)
E (R)

]2

. (4.15)

From Fig. 4.2, one can see that at large R values the dominant contribution

to
∑

K I
(K)
E for all K values up to Kmax comes from the K = 2 and K = 8

components. Although the K = 0 component is rather important around R = 5

fm, it is suppressed at large R values even more than the K = 10 component.

To understand this interesting effect, we display in Figs. 4.3 and 4.4 the

different components of the effective wave function u
(K)
eff (R). As is seen from

these figures, for the relative distance from R = 6 fm up to 25 fm, the contribu-

tion of the K = 8 component is larger than the contributions of the K = 4 and

6 components. One can observe that u
(0)
eff keeps a constant sign over the whole

region while u
(2)
eff changes sign at R ≈ 2 fm. The full line represents the sum

ueff(R) =

Kmax∑

K=0

u
(K)
eff (R). (4.16)

In Fig. 4.3, we also show the α + d scattering s-wave function uE for E =

1 MeV. It is important to note that this function keeps a constant sign in

the interval 5-19 fm. This constant-sign interval is even broader for smaller

values of E. Comparing the curves in Figs. 4.3 and 4.4, we observe that the

product u
(K)
eff (R)uE(R) for K = 0 changes sign several times. The integral
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Fig. 4.2. Integrals I
(K)
E (R) (Eq. 4.14) at the energy E = 1 MeV for

the α + d potential of Ref. [167] and different K values with

Kmax = 24 and Rmax = 30 fm.

I
(0)
E is first positive, starts decreasing at the first zero of uE, changes sign near

2 fm and increases again at the second zero of uE. The combined effect of

both zeros results in a cancellation between the internal and external parts of

the corresponding integral I
(0)
E . These zeros at short distances are due to the

existence of two (one physical and one forbidden) bound states in the potential.

The cancellation would not occur so strongly with a single zero.

The combined effects of the zero of u
(2)
eff and of the first zero of uE is just a

small plateau near 2 fm. The second zero of uE gives a minimum near 5 fm.

The result for the K = 2 component also yields an important cancellation, but

not as strong as in the K = 0 case. The effective functions for K = 4 and 6 are

very small in the region where uE keeps a constant sign and lead to negligible
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contributions.

A new situation appears for the K = 8 component. The effective wave

function is much smaller than K = 0 or 2 but the cancellation is minimal.

Hence it gives the second largest I
(K)
E at infinity. The same mechanism applies

for the smaller K = 10, 12, 14, . . . components. The K = 10 integral still

contributes significantly to the total sum.
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Fig. 4.3. Effective wave functions u
(K)
eff (R) [Eq. (4.12)] and ueff(R)

[Eq. (4.16)] for the α + d potential of Ref. [167] and different K

values with Kmax = 24 and Rmax = 30 fm. The scattering wave

function uE at 1 MeV is also represented.

In Fig. 4.5, we display the integral function IE =
∑

K I
(K)
E at the energy

E = 1 MeV for different potentials: folding potentials Vf1 and Vf2, attractive

potential Va, repulsive Woods-Saxon potential Vr and the potential V S1
a which is

obtained by a pair of supersymmetric transformations from the initial potential
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Fig. 4.4. Same as in Fig. 4.3 in logarithmic scale.

Va [24]. The last potential V S1
a has exactly the same 6Li ground-state energy

and the same s-wave phase shift as Va but its scattering wave functions have one

node less at small distances. The effective integral for the repulsive potential

displays a strongly different behavior from the integrals for other potentials.

Thus, we find that the K = 2 and K = 8 components of the three-body

hyperspherical wave function of the 6He nucleus give dominant contributions

to the integral IE(R) at large values of R and to the Gamow-Teller reduced

transition probability BGT(E). This finding contradicts the statement of the

authors of Ref. [100], that the contributions of the K = 0 and 2 components

are dominant. To show the convergence with respect to the value of maxi-

mal hypermomentum Kmax, we display in Fig. 4.6 the corresponding transition

probabilities [Eq. (4.3)] for Kmax = 2, 16, 22 and 24 for the potential Va. The cal-

culation involves 600 integration mesh points with a step of 0.05 fm (Rmax = 30
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Fig. 4.5. Integrals IE(R) [Eq. (4.14)] at the energy E = 1 MeV for

different α+d potentials calculated with Kmax = 24 and Rmax = 30 fm.

fm). From Fig. 4.6, we can see that the components with large K values still

give contributions to the transition probability. They are especially important

at lower energies. However, from the analysis of IE(R), we already found that

the main contributions come from the K = 2 and K = 8 components.

Additionally, the convergence is faster for the repulsive potential Vr and for

the folding potentials Vf1 and Vf2. In the case of Vr, the transition probability

for Kmax = 16 and Kmax = 24 shows almost the same features but has a

larger value. However, even in this case, the choice Kmax = 2 of the authors of

Ref. [100] is not realistic.

In Fig. 4.7, we display the transition probability dW/dE [Eq. (4.11)] ob-

tained with the potential Va and a fixed Kmax = 24 fm for different values of
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Fig. 4.6. Transition probability per time and energy units dW/dE of

the 6He β decay into the α + d continuum with the α + d potential Va

and Rmax = 30 fm for several values of Kmax. The experimental data

Exp.1 and Exp.2 are from Ref. [93] and [94], respectively.

Rmax, i.e., 14 fm, 20 fm, 30 and fm. We can see here that convergent results are

obtained only beyond Rmax ≈ 30 fm, which means that the extended halo ef-

fects are very important in a correct treatment of the low transition probability

dW/dE of the 6He β decay into α + d.

In Fig. 4.8, we display the transition probability for different potential mod-

els with the same Kmax = 24, and Rmax = 30 fm. One can see that a good

description of experimental data is obtained with the attractive Gaussian po-

tential Va: the shape of the data is reproduced well, though the theoretical curve

is below the data. We modified slightly the parameters of the potential Va, while

keeping the phase shift description (potential Vm in the Fig. 4.1), and obtain
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and Kmax = 24 for several values of Rmax. The experimental data

Exp.1 and Exp.2 are from Ref. [93] and [94], respectively.

the best description of the beta-decay data. The worst results correspond to

the repulsive Wood-Saxon potential, which does not give any bound state for

6Li and for which the description of the s-wave phase shift at low energies is

poor. The folding potentials Vf1 and Vf2 have intermediate behaviors. Potential

Vf1 overestimates the recent data while potential Vf2 provides a better order

of magnitude but its energy dependence disagrees with the experimental one.

The success of the deep Gaussian potential could be attributed to the fact that

it simultaneously reproduces both the 6Li ground state binding energy and the

s-wave phase shift at low energies. However the discussion of Figs. 4.2-4.4 indi-

cates that an important ingredient is the existence of two nodes in ueff . In order



81

0 0.5 1 1.5 2

E (MeV)

d
W

/d
E

 (
M

e
V

-1
 s

-1
) S2

a
V

10
-8

10
-6

10
-4

Vf2

Va

Vf1 Vr

S1

a
V Vm

Fig. 4.8. Transition probability per time and energy units dW/dE of

the 6He β decay into the α + d continuum for different α + d

potentials with Kmax = 24 and Rmax = 30 fm. The experimental data

are as in Fig. 4.6.

to test this assumption, we remove the non-physical ground state of Va by using

a pair of supersymmetric transformations [24]. The resulting phase-equivalent

potential V S1
a yields a scattering wave functions which have one node less at

small distances. The resulting dW/dE is about one order of magnitude larger

and resembles the one obtained with the folding potential Vf1 (see Fig. 4.8).

Notice however that Vf1 has two bound states but the phase shifts are not well

reproduced. A second phase-equivalent potential V S2
a is obtained by removing

the 6Li ground state from V S1
a with another pair of transformations. This repul-
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sive potential has still exactly the same phase shifts as Va but no bound state.

Its scattering wave functions have no node near the origin. The corresponding

transition probability dW/dE is now very close to the one obtained with poten-

tial Vr. The comparaison emphasizes the crucial role played by the forbidden

bound state, in addition to the physical 6Li ground state, for reproducing the

order of magnitude of the experimental data.

The total transition probabilities for different potentials are given in Ta-

ble 4.1. The second row contains results corresponding to the experimental

cutoff [94]. The values in the last column are derived from the most recent

experimental branching ratios and from the 6He half life [94]. As expected from

the previous discussion, the result obtained with the Gaussian potential Va falls

within the experimental error bars. The other results are too large, especially

with the repulsive potential.

Table 4.1.

Total transition probability per second W (in 10−6s−1) for the β

decay of 6He into α + d.

Va Vf1 Vf2 Vr Vm Exp. [94]

E > 0 MeV 1.06 13.65 3.15 185 2.04 (2.2± 1.1)

E > 0.37 MeV 0.84 9.90 1.81 134 1.59 (1.5± 0.8)

We have also calculated the Gamow-Teller matrix elements for the β decay

to the 6Li ground state. The value BGT = 4.489λ2 obtained with a three-

body 6Li wave function calculated under the same conditions and with the

same nuclear potentials as for 6He is about 5 % below the experimental value

B
(exp)
GT = 4.745λ2.



83

4.3. A comment on R-matrix fits

The R-matrix method has been extended by Barker [103] to the β decay

of a halo nucleus. This method has been applied to analyze experimental re-

sults [94]. Like in other models, it is crucial in the R-matrix method to take

care of the large extension of the halo. Without entering into details which are

explained in Refs. [94,103], this is achieved by introducing external corrections

proportional to the integral

ÎE(a) =

∫ ∞

a

Ei(R)Ef(E, R)dR =

∫ ∞

a

ui(R)

ui(a)

uE(R)

uE(a)
dR, (4.17)

where uE is replaced by its asymptotic expression (4.10). In the model of

Ref. [103], the asymptotic form of the two-body α+dineutron system is em-

ployed for ui,

uα+2n
i (R) = exp[−(2µ(12)3|EB|/h̄2)1/2R]. (4.18)

However, three-body asymptotics are rather different from this expression. In

Eq. (4.11), this role is played by the effective radial wave function ueff defined

by Eq. (4.16). In order to avoid the knowledge of three-body wave functions,

we test here an expression,

uα+n+n
i (R) =

∫ ∞

0
ud(r)ρ

−5/2 exp[−(2mN |EB|/h̄2)1/2ρ]dr, (4.19)

which is the projection of three-body asymptotics [67,174] on the deuteron wave

function.

In Table 4.2, we present for different values of the channel radius the correc-

tion (4.17) calculated with uα+2n
i , uα+n+n

i , and ueff at two typical energies. One

observes that the integrals obtained with the two-body asymptotic expression
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Table 4.2.

Correction integrals (4.17) in R-matrix fits: Iα+2n
E , Iα+n+n

E , and Ieff
E

are calculated with uα+2n
i , uα+n+n

i , and ueff [Eq. (4.16)], respectively,

as a function of the channel radius a and of the relative energy E.

E (MeV) a (fm) Îα+2n
E Îα+n+n

E Îeff
E

0.5 4.0 −0.022 −1.546 −1.402

4.5 0.232 0.427 0.669

5.0 4.585 2.756 2.981

5.5 6.285 4.897 5.059

6.0 6.900 6.255 6.345

1.0 4.0 −2.478 −0.761 −1.153

4.5 −4.379 −2.808 −3.143

5.0 −5.672 −4.606 −4.830

5.5 −5.892 −5.592 −5.707

6.0 −4.768 −5.333 −5.365

(4.18) are rather far from the realistic values obtained with ueff , even for a = 6

fm. Hence, using this approximation in R-matrix fits may significantly distort

the energy shape of the β delayed deuteron spectrum. A better approximation

is given by the three-body asymptotic expression (4.19), especially at higher

relative energies. However channel radii such as 4 fm or smaller should be

avoided.

4.4. Conclusion

In the present Chapter, we studied the β decay process of the 6He halo

nucleus into the α + d continuum in the framework of a three-body model.
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Three-body hyperspherical bound-state wave functions on a Lagrange mesh and

two-body α+d scattering wave functions have been used. For the calculation of

the transition probabilities per time and energy units of the β decay, several α+d

potentials were tested: an attractive Gaussian potential [167] and it’s slightly

modified version with a deep forbidden bound state, folding potentials derived

from the α + N p-wave potential of Ref. [168], and a repulsive potential [100].

The low experimental values result from a strong cancellation in the Gamow-

Teller matrix element describing the transition to the continuum. This cancel-

lation occurs between the internal and halo parts of the matrix element [101]

and is thus very sensitive to the halo description. Reaching convergence is not

easy: the two-body and three-body wave functions must extend up to 30 fm.

From the analysis of the theoretical results we have found that converged results

require the large value Kmax = 24 of the maximal hypermomentum. The domi-

nant contributions to the transition probability come from K = 2, K = 8, and

K = 10 components of the three-body hyperspherical wave function. The con-

tribution of the K = 0 component is small due to an almost perfect cancellation

of the internal and external parts of the Gamow-Teller matrix element.

The experimental transition probabilities per time and energy units [94]

are well described with the deep Gaussian potential of Ref. [167] (energy de-

pendence) and it’s modified version (energy dependence and magnitude) which

fairly reproduce the 6Li binding energy and the s-wave α + d phase shifts. The

quality of the agreement arises from the node structure of the initial and final

wave functions in the internal part. With the help of phase-equivalent poten-

tials derived with supersymmetric transformations, we have shown that the role

of the forbidden state is also essential. We realize that the efficiency of the deep

potential may be somewhat fortuitous but the existence of a good agreement

with experiment shows which ingredients are crucial in the interpretation of the

β delayed deuteron decay of 6He.

Our results allow testing the validity of corrections necessary in the R-matrix
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method [103]. We have shown that, in order to avoid some systematic bias in

the integrals over the external region, the two-body asymptotics could usefully

be replaced by three-body asymptotics.

Further progress must come from fully microscopic consistent descriptions

of the bound and scattering states. The results obtained with a microscopic

cluster model [104] still agree qualitatively with the most recent data [94] but

overestimate them by about a factor of two. Progress may be expected from

the possibility of calculating 6He wave functions ab initio from realistic two-

and three-body forces. However the present study shows that an accurate

description of the β delayed deuteron emission will require very accurate bound-

state wave functions up to distances as large as 30 fm and a development of

consistent scattering wave functions. The accidental cancellation occurring in

this process will make a successfull ab initio description particularly difficult.
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V. GAMMA-DELAYED DEUTERON EMISSION OF THE

6Li(0+; 1) HALO STATE

In this chapter we study the M1-transitions from the 6Li(0+) isobar-analog

state to the α + d continuum, and to the 6Li(1+) ground state [110]. 1 For the

description of the 6Li states, we use different two-body and three-body models.

Three-body hyperspherical wave functions [63] are based on the Lagrange-mesh

method and give an accurate solution of the three-body Schrödinger equation

(see chapter 4 and Ref. [67] for details). They have been calculated by the

Belgian group (D. Baye, P. Descouvemont, etc.). The α + d scattering wave

function is factorized into a deuteron wave function and a nucleus-nucleus scat-

tering state as was done in chapter 5. First we will develop the three-body

model of the M1-transition process. The details of the model and matrix el-

ements of the M1-transition operator in the three-body system are given in

Appendices D and E. Then we describe the potentials and the corresponding

two-body and three-body wave functions. At last we discuss the numerical

results in comparison with the experimental data, and analyze the sensitivity

with respect to the α + d potential.

5.1. Model

5.1.1. Three-body wave functions of 6Li bound states

The 6Li bound-state wave functions are defined in an α+n+ p model using

the hyperspherical coordinates [63]in the same way as was done in previous

1This chapter is based on the results of Refs. [106,110]
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chapters. A set of Jacobi coordinates for three particles with mass numbers

A1 = 1, A2 = 1, and A3 = 4 is defined as (see Eq. (2.2)

x =
√

µpn r, y =
√

µαd R, (5.1)

where the (dimensionless) reduced masses are given by µpn = 1/2 and µαd =

4/3,

r and R are p − n relative coordinate and the coordinate between α and d,

respectively. Equations (5.1) define six coordinates which are transformed to

the hyperspherical coordinates as (see Eq. (3.2))

ρ2 = x2 + y2, α = arctan(y/x), (5.2)

where α varies between 0 and π/2. With the angular variables Ωx = (θx, ϕx)

and Ωy = (θy, ϕy), equations (5.2) define a set of hyperspherical coordinates

which are known to be well adapted to the three-body Schrödinger equation.

We define γ = (`x, `y, L, S) where `x and `y are the orbital momenta asso-

ciated with the Jacobi coordinates x and y, respectively. With the notation

Ω5 = (α, Ωx, Ωy), a three-body wave function with spin J and parity π reads

(see chapters 4, 5 and Ref. [67])

ΨJMπ
6Li (ρ, Ω5) = ρ−5/2

∑

γK

χJπ
γK(ρ)YJM

γK (Ω5), (5.3)

where YJM
γK (Ω5) are the hyperspherical functions (including spin). The three-

body wave functions contain components with total intrinsic spin S = 0 and

S = 1. Because of the positive parity, `x + `y is even and only even K values

are involved.

5.1.2. α + d two-body wave functions

As it was done in Ref. [105] and in chapter 5 for the 6He β decay, the scat-

tering α + d wave functions are factorized into a deuteron ground-state wave
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function, calculated with an appropriate NN potential, and an α+d wave func-

tion derived from a potential model. We neglect the small D component of the

deuteron. In the α + d exit channel, only S waves are involved. Consequently,

the final 1+ wave function reads [110]

Ψ1M+
αd (E, r, R) = Ψd(r) Ψαd(E; R). (5.4)

The spatial part of the deuteron wave function is written as

Ψd(r) = r−1 ud(r) Y00(r̂). (5.5)

The S-wave component of the α+d relative motion wave function is factor-

ized as [110]

Ψαd(E; R) = R−1 uE(R) Y00(R̂). (5.6)

The normalization of the scattering wave function is fixed by the asymptotic

behavior as

uE(R) →
R→∞

F0(kαdR) cos δ0(E) + G0(kαdR) sin δ0(E), (5.7)

where F0 and G0 are the Coulomb functions,

kαd is the wave number of the relative motion,

δ0(E) is the s-wave phase shift at energy E.

The present two-body model can also be applied to α + d bound states. In

that case, the scattering wave function uE(R) in Eq. (5.6) is replaced by an

S-wave bound-state radial function.

5.1.3. Transition probability per time and energy units

For the M1 transition to the ground state, the gamma-width is calculated

from [110]

Γγ(0
+ → 1+) =

16π

9
k3

γ |〈Ψ1+

6Li||MM
1 ||Ψ0+

6Li〉|2, (5.8)
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where kγ is the wave number of the emitted photon. This definition involves

bound-state wave functions on both sides.

With the normalization (5.7) of the scattering wave function, the M1 tran-

sition probability of the process

6Li(0+) → α + d + γ, (5.9)

per time and energy units, is given by reduced matrix elements between the

initial bound state and the final scattering states as [110] (see Appendix 4)

dWγ

dE
=

32µadmN

3h̄3kαd

k3
γ |〈Ψ1+

αd(E)||MM
1 ||Ψ0+

6Li〉|2, (5.10)

where mN is the nucleon mass. The maximum α + d energy is Q = 2.089

MeV. The M1 differential gamma-width per energy unit to continuum states is

expressed as

dΓγ(0
+ → α + d)

dE
= h̄

dWγ

dE
, (5.11)

and the total width is deduced by integration over the energy.

The M1 operator contains orbital and spin-dependent components. For a

general three-body system, it reads, in Jacobi coordinates [67]

MM
1µ(x, y) = µN

√
3

4π
[Ax`x,µ + Ay`y,µ + Axy(x× py + y × px)µ +

3∑
i=1

gs(i)siµ],

(5.12)

where µN = eh̄/mNc is the nuclear magneton,

gs(i) their gyromagnetic factors,

si are the spins of the three particles.
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Coefficients Ax, Ay and Axy are related to the mass and charge numbers as

Ax =
Z2A

2
1 + Z1A

2
2

A1A2A12
, Ay =

(Z1 + Z2)A
2
3 + Z3A

2
12

AA12A3
, Axy =

√
A1A2A3

A2
12A

(
Z1

A1
− Z2

A2

)
,

(5.13)

where A12 is the reduced mass of the 1 + 2 system; in the present case it is

denoted as µpn. Variables px and py are the momenta associated with the Jacobi

coordinates x and y, respectively. The matrix elements of the M1 operator

between hyperspherical functions are given in appendix 5.

5.2. Results and discussion

5.2.1. Conditions of the calculations

Three-body wave functions of the 1+ and 0+ states

The initial 0+ wave function is calculated in an α + n + p three-cluster

model, using hyperspherical coordinates, as explained in Ref. [67]. The same

model is applied to the 6Li ground state. In both cases, the Coulomb α + p

interaction is included, and is taken as a point-sphere potential parameterized

as VC(r) = 2e2erf(r/RC) with a radius RC = 1.2 fm. Two-body forbidden states

are removed by using the Orthogonalising Pseudopotential method [135]. The

central Minnesota interaction [152] describes the n+p system. It is adjusted on

the deuteron binding energy and reproduces fairly well nucleon-nucleon phase

shifts at low energies. For the α+N nuclear interaction we employ the potential

of Voronchev et al. [168], slightly renormalized by a scaling factor (1.008 for 1+

and 1.043 for 0+) to reproduce the experimental energies with respect to the

three-body threshold (−3.70 MeV for the ground state, and −0.13 MeV for the
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0+ state). We truncate the hypermomentum expansion to Kmax = 20 which

ensures a good convergence of the energies.

The matter r.m.s. radius of the ground state (with 1.4 fm as α radius) is

found as
√

< r2 > = 2.25 fm, a value slightly lower than the experimental value

(2.32±0.03 fm [162]) (note however that a significantly larger radius, 2.54±0.03

fm, was found in Ref. [175]). For the excited 0+ level, we find
√

< r2 > = 2.56

fm, which is close to the 6He radius. This large value confirms the halo structure

of this state [176]. The ground state is essentially S = 1 (96.0%). The S =

0 component is 84.4% for 6Li(0+) and 82.1% for 6He. The 6Li(0+) and 6He

hyperradial wave functions are plotted in Fig. 5.1 for the dominant K = 0, 2

hypermoments.

According to charge symmetry the short-range parts of the 6He and 6Li(0+)

analog levels should be very close to each other. This is confirmed by Fig. 5.1.

On the contrary, the halo components of both wave functions are expected

to differ significantly: the charges of the halo nucleons are different, and the

binding energy of 6Li(0+) is much lower. Consequently, the asymptotic decrease

of the wave function is slower, and matrix elements involving this long-range

part should be different from their analogs in 6He.

α + d scattering states

In the following we use the same α + d potentials from Chapter IV (the

phase shifts are given Fig. 4.1): the attractive Gaussian potential of Ref. [167]

Va, two folding potentials Vf1 and Vf2, and a potential V S1
a , obtained from

a supersymmetric transformation [24] from the deep potential Va. The last

potential gives the same phase shifts and the same ground-state energy as the

initial potential Va, but the forbidden state is removed and the role of the Pauli

principle is simulated by a short-range core. It is used in order to test the

influence of the short-range part of the α + d wave functions, and in particular
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Fig. 5.1. Hyperradial wave functions for 6Li(0+) (solid lines) and 6He

(dashed lines) corresponding to S = L = 0, K = 0, 2. The insert shows

the same plot in a logarithmic scale.

of the node location.

The folding potential Vf1 yields the correct binding energy for 6Li, however

the quality of the S-wave phase shift is poor. The folding potential Vf2 describes

the S-wave phase shift accurately (see Fig. 4.1), but overestimates the binding

energy of the 6Li ground state (−2.386 MeV).

In all cases, the α + d Coulomb potential is chosen as in Ref. [167], i.e. as

a bare Coulomb potential.

5.2.2. M1 properties of bound states

A test of three-body wave functions is provided by M1 spectroscopic prop-

erties, which are well known experimentally [153]. In Table 5.1, we present the

calculated values of the magnetic moment and of the B(M1) in 6Li. Separate

contributions are given for the orbital and spin terms of the M1 operator [see

Eq. (5.12)]. In both cases, the contribution of the orbital term is small since the
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dominant component in the ground-state wave function is an S wave. The main

contribution to the M1 matrix element comes from the spin term. The present

matrix element corresponds to B(M1) = 7.9 W.u., or Γγ = 7.5 eV, which are

in good agreement with experiment (8.62 ± 0.18 W.u. and 8.19 ± 0.17 eV, re-

spectively). The results are also close to those of Kukulin et al. [177] who use

different variants of a three-body model. These matrix elements can also be

Table 5.1.

Contributions (in µN) of the orbital (L) and spin (S) components to

the M1 matrix elements. The three-body model is used for the 0+

state. Experimental data are taken from [153].

(L) (S) Sum Exp.

Three-body model for 1+

µ(6Li) 0.02 0.84 0.86 0.82

〈Ψ1+

6Li||MM
1 ||Ψ0+

6Li〉 0.13 2.04 2.17 2.28

Two-body model for 1+

µ(6Li) 0 0.88 0.88 0.82

〈Ψ1+

6Li||MM
1 ||Ψ0+

6Li〉 0.04 1.53 1.57 2.28

obtained with a 2-body description of the 6Li ground state. In that case we use

the potential Va to generate the wave functions. Since components with L 6= 0

are small in the ground-state wave function, the two-body model is expected

to be a good approximation. The 1+ magnetic moment in the two-body model

is a simple sum of the proton and neutron magnetic moments. In this case,

both approaches provide similar results, in good agreement with experiment.

However the rms radius in the two-body model is
√

< r2 > = 2.11 fm, lower

than experiment and than the three-body value. In addition, the M1 transition

matrix element (see Table 5.1) provides Γγ = 3.9 eV, i.e. an underestimate of
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the experimental value. These results suggest that the short-range part of the

two-body description is too simple. However, transitions to the continuum are

more sensitive to the long-range part of the α− d wave functions.

5.2.3. M1-transition to the α + d continuum: effective

wave functions and their integrals

Since the α+d relative motion is described by S waves, the first and second

orbital terms of the M1 transition operator (5.12) do not contribute to the

reduced matrix elements for transitions to the α + d continuum. The orbital

and spin terms yield nonzero matrix elements only for the `x = `y = L = S = 1

and `x = `y = L = S = 0 components of the three-body wave function,

respectively. As it will be shown further, the main contribution comes from the

spin part of the transition operator. The P -wave hyperspherical components

give small corrections to the process since the 0+ state is essentially S = 0.

In order to analyze the γ decay process to the continuum, we introduce

effective wave functions and their integrals, in analogy with the β decay study

of the 6He halo nucleus into the α + d continuum [105]. We restrict the pre-

sentation to the dominant spin part. For the initial 0+ state, let us define the

effective wave function with hypermomentum K

u
(K)
eff (R) =

(
A− 2

A

)3/4

R

∫
dr φ00

K (α)
χ0+

0000K(ρ)

ρ5/2 rud(r), (5.14)

and the effective integrals

I
(K)
E (R) =

∫ R

0
dR′ uE(R′)u(K)

eff (R′), IE(R) =
∑

K

I
(K)
E (R), (5.15)
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where ρ and α depend on (r, R), as given in Eq. (5.2). The normalization

factor in Eq. (5.14) arises from the Jacobian between the (R, r) and (x, y)

coordinates. The reduced matrix elements of the M1 operator (spin part) are

then directly proportional to IE(R) (see Appendix 5).
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Fig. 5.2. Integrals I
(K)
E (R) [Eq. (5.15)] at E = 1 MeV for the α + d

potential Va and different K values (labels).

In the following, we analyze two properties: the convergence of the hyper-

momentum expansion, and the sensitivity of the effective integrals with respect

to the α + d potential. Let us start with the influence of Kmax. In Fig. 5.2 we

show the integrals I
(K)
E (R) calculated at E = 1 MeV with potential Va, for dif-

ferent K-values. The dominant contribution at large R values comes from the

K = 0, 2, 8 components in the 6Li(0+) wave function. The components K = 4

and K = 10 give smaller and comparable effects to the process. The contribu-

tions of other components are small and not visible at the scale of the figure.

Similar results were obtained for the β decay of 6He [105]. In Ref. [105] it was

shown that the K = 4 and K = 6 contributions are affected by cancellation

effects, which do not occur for K ≥ 8. The situation is therefore very close to

the 6He(0+) beta-decay [105] into the α + d continuum which confirms the halo

structure of the 6Li(0+) state, suggested by its large r.m.s. radius.
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In the second step, we analyze the sensitivity of the effective integrals with

respect to the potential. In Fig. 5.3, these integrals are shown at E = 1 MeV.

The potentials Va and Vf2, which provide similar phase shifts and wave func-

tions, give results close to each other. This is due to the similar node positions

near 5 fm of the corresponding scattering wave functions. The folding potential

Vf1, owing to a poor phase-shift description, yields a scattering wave function

with an inner node shifted to the right (about 0.7 fm), and therefore provides

a different integral.
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Fig. 5.3. Effective integrals IE(R) [Eq. (5.15)] at E = 1 MeV for

different α + d potentials (solid lines). Dotted lines represent the

equivalent integrals for the 6He β decay [105].

In Fig. 5.3, we also show as dotted lines, for each potential, the effective

integrals obtained for the 6He β decay [105] (notice that in Ref. [105], the

factor ((A − 2)/A)3/4 = 0.74 in the effective wave function was missing). In

that work, we have shown that a node in the α+d continuum wave functions is

responsible for a nearly perfect cancellation effect in the β decay matrix element.

This is illustrated in Fig. 5.3: for the recommended potential Va, the internal

contribution to the matrix element is about −0.30 whereas the external term

is about +0.35. The final result is therefore much lower than each component
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individually. This phenomenon yields a strong sensitivity of the β spectrum

with respect to the α + d potential.

Coming back to the γ decay of the 6Li analog level (solid lines in Fig. 5.3),

the internal parts of the matrix elements are very close to their 6He counterparts

up to about 10 fm. However, as the long-range parts of the wave functions are

different in both nuclei, the external contribution to the γ decay matrix element

is significantly larger (about +0.42 for Va). Consequently, a cancellation effect

still occurs, but is less important. If we disregard potential Vf1 which does not

reproduce the α + d phase shifts, and hence the correct location of the nodes

in the continuum wave functions, all potentials provide the same sign for the

matrix element.

5.2.4. M1-transitions to the α + d continuum: transition

probabilities

In Table 5.2 we give the contributions of different K values to the M1 reduced

matrix element into the α + d continuum. As we noted above, the orbital and

spin parts of the M1 transition operator yield nonzero matrix elements only

with the `x = `y = L = S = 1 (P -wave) and `x = `y = L = S = 0 (S-wave)

components of the three-body wave function, respectively. As expected from

the previous analysis, the dominant contributions come from the K = 0, 2 and

8 components. Additionally, the contribution of the orbital part of the M1

transition operator is strongly suppressed (2% at most).

To analyze the convergence with respect to the upper bound Rmax [see

Eq. (5.15)], we display in Fig. 5.4 the differential width dΓγ/dE for several val-

ues of Rmax (potential Va is used). From Fig. 5.4, one can see that Rmax = 10

fm is far from sufficient. Achieving a precise convergence requires larger values

(∼ 25 − 30 fm), as in the beta-decay calculations of the 6He halo nucleus into
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Table 5.2.

Contribution of different 6Li(0+) hypermomenta to the M1 reduced

matrix elements for transitions into the α + d continuum (in 10−3µN)

for the orbital (L) and spin (S) terms at several energies

E = 0.5 MeV E = 1 MeV E = 1.5 MeV

K (L) (S) (L) (S) (L) (S)

0 0 -56.9 0 -54.2 0 -46.4

2 0.5 -85.9 0.6 -104.9 0.4 -115.6

4 3.1 -36.3 4.5 -31.0 5.2 -21.0

6 1.5 -11.4 2.1 -4.9 2.2 1.4

8 -1.2 -51.1 -1.6 -61.6 -1.7 -61.3

10 -0.3 -22.2 -0.3 -23.1 -0.3 -20.0

> 10 0.3 -21.2 0.4 -14.5 0.4 -7.3

Sum 3.9 -285.0 5.7 -294.2 6.2 -270.2

the α+d continuum [105]. This is not surprising as the halo structure of 6Li(0+)

is even more pronounced (see Fig. 5.1).

In Fig. 5.5, we display the differential width dΓγ/dE for several α+d poten-

tials. Contributions from three-body components up to Kmax = 20 are taken

into account with the maximal relative distance Rmax = 30 fm. The folding po-

tential Vf1 shows a picture strongly different from the other ones, with even a

sharp minimum at about E = 0.8 MeV. This potential gives a poor description

of the α + d phase shift (see Ref. [105]) and hence a shifted node position for

the α + d scattering wave function. This results in a strong cancellation effect

as explained in the previous section. The folding potential Vf2 and the deep

potential Va give close results and the supersymmetric potential V S1
a slightly

overestimates them.

The integrated γ widths (from E = 0 up to Q = 2.089 MeV) are given in
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Fig. 5.4. Differential width for M1 transitions into the α + d

continuum with the α + d potential Va for several values of Rmax (in

fm).

Table 5.3 for the different potentials. The Gaussian potential Va simultaneously

reproduces both the 6Li ground state binding energy and the S-wave phase

shift at low energies. Additionally, the S-wave scattering wave function of this

potential has two nodes at short distances (one due to the ground state, and

one due to the Pauli forbidden state). The nearly phase-equivalent potential

Vf2, which also has a forbidden bound state (and hence two nodes at short

distances) gives similar results.

The influence of the nodes in the scattering wave function can be tested

by using potential V S1
a . The non-physical ground state of Va is removed by

using a supersymmetric transformation [24]. The resulting phase-equivalent

potential V S1
a has exactly the same 6Li ground-state energy and the same S-

wave phase shift as Va but its scattering wave functions have one node less at

small distances. The corresponding width of the M1 transition is about two

times larger (see Table 5.3). In the 6He β decay process, this potential strongly

overestimates the data [105]. Notice that a very different result is obtained with

the folding potential Vf1, which has two bound states, but does not reproduce
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Fig. 5.5. Differential width for M1 transitions into the α + d

continuum for several potentials.

the α + d phase shifts and the 6He delayed β decay. The shape and magnitude

of the transition width and probability are strongly different from the result for

Va.

Table 5.3.

Integrated γ widths for different potentials, and branching ratio

BR = Γγ(0
+ → α + d)/Γγ(0

+ → 1+) (we use the theoretical value

Γγ(0
+ → 1+) = 7.5 eV).

potential Γγ (meV) BR

Va 0.90 1.2× 10−4

Vf1 0.04 5.3× 10−6

Vf2 1.08 1.4× 10−4

V S1
a 2.27 3.0× 10−4

Considering the Va and Vf2 potentials, which are consistent with the data

on 6He β decay, we deduce a recommended branching ratio of 1.3 × 10−4 by
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averaging both values. A previous estimate [108] of the branching ratio Γγ(0
+ →

α + d)/Γγ(0
+ → 1+) provides 0.8 × 10−4. This value is close to our results

obtained with potential Va [167], and is also similar to the branching ratio

observed in the β decay of 6He [94]. Such a branching ratio should be observable

experimentally.

5.3. Conclusion

In the present chapter, we have studied the M1 transition process from the

6Li(0+) halo state into the α + d continuum and into the 6Li(1+) ground state.

Our goal was twofold: (i) to determine the energy distribution of the γ width for

the decay into the continuum, and to analyze its sensitivity with respect to the

α+d potential; (ii) to compare the results of M1- process study with the results

of the chapter 4 on the 6He β delayed decay. This comparison is a good tool

to test charge symmetry in exotic nuclei. The 6Li(0+, 1+) states are defined in

the three-body hyperspherical formalism. The experimental magnetic moment

of the ground state and γ width of the 0+, T = 1 state are reproduced with a

good accuracy.

We have shown that the spin-dependent term of the M1 transition operator

gives the essential part of the matrix elements. In order to test the influence

of the 6Li bound-state wave functions, we have also used the supersymmetric

transform [24] instead of the Orthogonalising Pseudopotential method for the

removal of forbidden states in the three-body wave functions. The results are

very similar to the present ones, and were therefore not shown.

In the M1 transition probability, the K = 0 and K = 2 components of

the three-body wave function provide about 50% of the matrix elements; con-

sequently, higher hypermomenta play an important role. The same conclusion

holds in the 6He β decay into the α+d continuum, where large K values cannot
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be neglected.

M1 transitions to the continuum provide a good probe of the halo structure

in the 6Li(0+) state. The comparison with the 6He β decay shows that the in-

ner parts of the matrix elements are very close to each other, as expected from

charge symmetry. However, the halo parts are different, owing to the different

binding energies, and different charges of the halo nucleons. In 6Li, the binding

energy is lower, and therefore the asymptotic decrease of the wave function

is slower. Consequently the halo contribution is larger in the γ decay matrix

element, and even represents the dominant part. This leads to the conclusion

that charge-symmetry breaking is rather strong in these processes. The nearly

perfect cancellation effect between short-range and halo contributions observed

in 6He β decay is less important here, and the sensitivity with respect to the

potential is therefore weaker. Several α + d potentials were tested. The sen-

sitivity is still important (about a factor of 2), but lower than in the 6He β

delayed decay.

The present branching ratio of about 1.3× 10−4 is consistent with the value

of Ref. [108], where the authors use a simplified model. This value is based on

potential Va which reproduces the 6Li binding energy, the α+d low-energy phase

shifts, and provides good results for the 6He β decay. It is therefore expected

to have the same quality for the 6Li γ decay. An experimental measurement

seems to be possible with current facilities, and would provide, in combination

with the data on 6He β decay, an important step in a better understanding of

the halo structure in isobaric analog states.



104

VI. BETA-DECAY OF THE 11Li NUCLEUS INTO 9Li AND

DEUTERON WITHIN A THREE-BODY MODEL

As we have shown in chapter 4, the low value of the branching ratio of the

6He beta-decay into the deuteron continuum channel is the result of a strong

cancellation between contributions of the ”internal” and ”halo” parts of the

Gamow-Teller matrix element [101, 105]. 1 It was shown that the cancellation

requires that the α+d potential contains a forbidden state below the 6Li ground

state in order to have the correct node structure of the scattering wave function.

The cancellation is so strong in the Gamow-Teller matrix element for 6He that

it requires an almost perfect balance between the internal and halo parts, which

should be fortuitous. A similar effect is thus not expected for other halo nuclei

possessing a β delayed deuteron decay branch such as 11Li:

11Li → 9Li + d + e− + ν̃e. (6.1)

In section 6.1., the β decay model for the 11Li two-neutron halo nucleus

into the 9Li + d continuum is summarized. The potentials and the correspond-

ing three-body hyperspherical and two-body scattering wave functions are de-

scribed in section 6.2. The properties of the Gamow-Teller matrix element are

studied in section 6.3. In section 6.4., we discuss the obtained numerical re-

sults and compare them with experimental information. Development of the

model in view of new data will be done in section 6.5. Conclusions are given in

section 6.6.

1This chapter is based on the results of Refs. [123,124]
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6.1. Model

The initial wave function is expressed as a bound-state wave function of the

three-body 9Li + n + n system with local 9Li + n and nn interactions. It was

calculated by the Belgian group (D. Baye, P. Descouvemont, etc.). The spin

of the core is neglected. The total orbital momentum L of the three particles

is assumed to be equal to the total spin S of the neutrons as for 6He [105].

Jacobi coordinates, i.e. the relative coordinate r between the neutrons and the

coordinate R of their center of mass with respect to the 9Li core, are necessary

to calculate the overlap with the final scattering state. These coordinates are

conveniently replaced by hyperspherical coordinates which involve five angu-

lar variables Ω5 and the hyperradius ρ. The wave function is expanded over

hyperspherical harmonics depending on Ω5 and on the hypermomentum K, as

was done in previous chapters 4-6. The coefficients in this expansion depend

on the hyperradial coordinate ρ and are expanded in Lagrange functions [166]

(see Ref. [67] and chapter 4 for details).

For the final scattering state, we assume an expression factorized into the

deuteron ground-state wave function depending on r and a 9Li + d scattering

wave function depending on R derived from a potential model. We neglect the

small D component of the deuteron.

The transition probability per time and energy units is given by [169]

dW

dE
=

mec
2

π4vh̄2G
2
βf(Q− E)BGT(E), (6.2)

where me is the electron mass,

v and E are the relative velocity and energy in the center of mass system of 9Li

and deuteron,

Gβ = 2.996 × 10−12 is the dimensionless β decay constant [170]. The Fermi

integral f(Q−E) depends on the kinetic energy Q−E, available for the electron
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and antineutrino. The mass difference Q between initial and final particles is

given in MeV by

Q = 3.007− S2n (6.3)

as a function of the two-neutron separation energy of the halo nucleus. With

the 11Li value S2n = 300± 19 keV from the atomic mass evaluation [111], Q is

equal to 2.71 ± 0.02 MeV. However according to a recent remeasurement, the

11Li two-neutron separation energy becomes S2n = 376 ± 5 keV [112] leading

to Q = 2.63 MeV. We shall first use the standard value and then consider the

importance of this modification.

Since the total orbital momentum and parity are conserved, only the l = 0

partial scattering wave contributes. Hence, only the initial L = S = 0 com-

ponent of 11Li described with a spin 0 core can decay to 9Li + d. In order to

allow the use of a complex optical potential for describing the scattering states,

we generalize the formula of Refs. [101,105]. The final state is described by an

ingoing scattering wave. At energy E, a partial wave u
(−)
E,l of an ingoing scat-

tering wave function is related to a partial wave u
(+)
E,l of an outgoing scattering

wave function by

u
(−)
E,l (R) = (−1)lu

(+)∗
E,l (R). (6.4)

The outgoing radial scattering wave functions

u
(+)
E,l (R) = eiδluE,l(R) (6.5)

are normalized asymptotically according to

uE,l(R) →
R→∞

cos δl(E)Fl(kR) + sin δl(E)Gl(kR), (6.6)

where δl(E) is the l-wave phase shift at energy E,

Fl and Gl are Coulomb functions [144],

and k is the wave number of the relative motion,. The subscript l = 0 is

understood in the following.
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The reduced transition probability can be written as

BGT(E) = 6λ2
∣∣eiδ0IE(∞)

∣∣2 , (6.7)

where λ = −1.25 [171]. The phase in front of IE does not play any role if the

potential is real. The integral

IE(R) =

∫ R

0
uE(R′)ueff(R′)dR′ (6.8)

depends on a cutoff radius R over the relative coordinate between the core

and the center of mass of the nucleons. Only its value at infinity is physically

relevant but it will help us to understand the physics of the decay process.

This integral involves scattering wave functions uE(R) and depends thus on the

9Li + d relative energy E. This integral also involves an effective wave function

ueff(R) = R
∑

K

∫ ∞

0
ZK(r,R)ud(r)rdr, (6.9)

where ud(r) is the deuteron radial wave function depending on the relative co-

ordinate r of the two nucleons. The sum runs over the values of the hypermo-

mentum K in the expansion of the initial bound state. The function ZK(r, R)

is the radial part of the K component with all angular momenta equal to zero

in the expansion of the initial wave function. Its expression is given by Eqs. (3)

and (14) in Ref. [105]) where however a normalization factor [(A − 2)/A]3/4 is

missing. The results of Ref. [105]) must be modified accordingly. In the follow-

ing, we also make use of partial integrals I
(K)
E (R) obtained from Eq. (6.8) with

the different terms in Eq. (6.9). The sum of the I
(K)
E (R) is IE(R).

6.2. Potentials

The deuteron wave function ud was calculated with the central Minnesota

interaction [152] (see Ref. [67] for details). An energy Ed = −2.202 MeV was

obtained.
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The 9Li + n + n wave function was calculated with the 9Li + n potential P2

of Ref. [118] and the nn Minnesota interaction with exchange parameter u = 1.

In order to fit the binding energy of 11Li, the P2 interaction is multiplied by a

parameter [117]. The values 0.992 and 0.9965 provide S2n = 0.307 and 0.376

MeV, respectively. The s-wave scattering length is then slightly modified from

−25.4 fm to −19.0 or −22.2 fm, respectively. Potential P2 contains a forbidden

state in the s wave which is eliminated with the pseudopotential method [135].

Forbidden states need not be eliminated in two-body systems as they do not

affect scattering properties. Their presence leads to more realistic wave func-

tions for the relative motion. In three-body systems however, forbidden states

must be eliminated because otherwise they would unrealistically contribute to

the binding energy. The pseudopotential moves them to a high energy without

affecting the other properties of the two-body potentials.

A 9Li + d optical potential has been obtained by fitting elastic scattering

data at a c.m. energy of 3.86 MeV [178]. The real part of this potential does not

display any resonance below the Coulomb barrier. Such a resonance has been

observed in several channels at the excitation energy 18.15 ± 0.15 MeV [97],

i.e. at the c.m. energy 0.25± 0.15 MeV above the 9Li + d threshold. As shown

below, this resonance is crucial to explain the order of magnitude of the β

delayed deuteron decay of 11Li. The potential of Ref. [178] is thus not useful

here. Its real part provides three bound states. When the depth of its real

part is reduced from 104.6 MeV to 89 MeV, the upper bound state becomes a

resonance near the experimental value. However the agreement with the elastic

scattering experiment is then lost.

We approximate the 9Li+d potential by expressions based on simple physical

arguments derived from a microscopic cluster model interpretation. (i) At short

distances, 9Li and deuteron can form a bound state in the s wave. This bound

state has the same parity as the 9Li core, i.e. a negative parity. We thus impose

to the potential to reproduce the energy of the 1/2− excited state of 11Be at
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an excitation energy of 0.320 MeV. This means that our potentials will have a

bound state near −17.6 MeV. (ii) In the microscopic cluster model, the 9Li + d

system possesses a forbidden state in the s wave. The role of such a state can

be simulated by a potential deep enough to contain an unphysical bound state

below the physical bound state in order to simulate the correct node structure

of the scattering wave function. (iii) The 11Be nucleus displays a resonance

around 0.25 MeV above the 9Li + d threshold. As in Ref. [121], we consider
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Fig. 6.1. Potential Va and phase-equivalent potentials Va1 and Va2

(full lines); potential Vb (dashed line); potential Vc and

phase-equivalent potentials Vc1 (dotted lines).

simple Gaussian potentials parametrized as

V (R) = −V0 exp(−αR2). (6.10)

The choice of a Gaussian form factors restricts the number of parameters. A

Coulomb term 3e2 erf(βr)/r with β = 0.71 fm−1 (scaled from 0.75 fm−1 in the
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α + d case) is added to all potentials. The Coulomb barrier is located between

0.55 and 0.6 MeV.

Potential Va with α = 0.14 fm−2 and V0 = 89.5 MeV (see Fig. 6.1) has

a bound state at energy −17.63 MeV and a forbidden state at −52.42 MeV.

The width of the Gaussian form factor has been chosen in such a way that the

potential also verifies criterion (iii). The corresponding phase shift is displayed

as a full line in Fig. 6.2. A resonance appears at about 0.33 MeV with a width

of about 0.1 MeV. The spin and parity of this resonance should be 3/2−. Its

width is smaller than the experimental width derived in Ref. [97] which however

largely exceeds the Wigner limit and is therefore questionable.

In the 6He case, a forbidden state plays a crucial role in the reproduction

of the experimental order of magnitude. In order to study the role of the

forbidden state here, we perform pairs of supersymmetric transformations [24]

in order to remove it from Va while keeping the other bound state and the s-wave

resonance and phase shift. The resulting phase-equivalent potential denoted as

Va1 exhibits a strong repulsive core (see Fig. 6.1). The physical bound state of

Va1 is then removed by another pair of transformations leading to the phase-

equivalent potential Va2 without any bound state. Both potentials Va1 and Va2

provide the same s-wave phase shift as Va in Fig. 6.2.

We also consider other Gaussian potentials. Potential Vb with the same

range as Va but V0 = 42.7 MeV has its ground state at −17.63 MeV. This

potential possesses a weakly bound state near −0.184 MeV in place of a reso-

nance. Potential Vc is quite similar to Vb but differs from it by the fact that it

possesses a resonance at 0.28 MeV in addition to a bound state at −17.66 MeV,

with α = 0.161 MeV and V0 = 44.8 MeV. Removing the bound state leads to

the phase-equivalent potential Vc1 with a repulsive core. These potentials are

compared in Fig. 6.1 and their phase shifts are displayed in Fig. 6.2. One ob-

serves that the phase shift of potential Vc has the same shape as the phase shift

of Va and also displays the expected resonance but at a lower energy. On the
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Fig. 6.2. s-wave 9Li + d phase shifts obtained with potentials Va (and

Va1, Va2, full line), Vb (dashed line) , and Vc (and Vc1, dotted line).

contrary, the phase shift of potential Vb is monotonic.

These potentials are compatible with the elastic scattering data of Ref. [178]

if some surface absorption is added. Without absorption, even the order of

magnitude of the cross section is incorrect beyond 70 degrees. We use the

simple optical potential

Vopt(R) = −(V0 + iW0
√

αR)e−αR2

, (6.11)

where the imaginary part is proportional to the derivative of the real part.

6.3. Gamow-Teller integrals

The integrals I
(K)
E (R) calculated with potential Va are displayed in Fig. 6.3
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as a function of R for different K values at energy 1 MeV. The convergence

of
∑

K I
(K)
E (R) is reached for Kmax = 20. Partial waves K = 2, 0, and 4 are

strongly dominant, although the cumulated contribution of all higher partial

waves is not negligible. Contrary to the 6He case, no important cancellation is

encountered here because the dominant contributions have the same sign.
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Fig. 6.3. Partial integrals I
(K)
E (R) for K = 0, 2, and 4 at the energy

E = 1 MeV for potential Va. The sum of the three components

K = 0, 2, and 4, (dotted line) and the converged sum

IE(R) =
∑

K I
(K)
E (R) [Eq. (6.8)] (lowest full line) are also displayed.

In Figs. 6.4, 6.5 the integrals IE(R) are compared for the different potentials

considered at two energies: the near-resonance energy 0.3 MeV and a typical

non-resonant energy 1 MeV. As shown by Eq. (6.8), the integral IE displays

a minimum or a maximum every time either uE or ueff vanishes. Its behavior

depends on the node structure of the scattering wave function and thus on the
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Fig. 6.4. Integrals IE(R) [Eq. (6.8)] at E = 0.3 MeV, for various

potentials.

depth of the potential. At both energies, all curves present an extremum near

2 fm which corresponds to the unique node of ueff . They present one to three

additional nodes corresponding to the possible bound states and resonance of

the potential. However, in spite of their different numbers of bound states and

thus of nodes, potentials Va, Va1, and Va2 do not give very different results

at both energies. In all three cases, the amplitude of the integral starts to

increase beyond 3 fm and reaches a plateau near 20 fm. At 1 MeV, it presents

a maximum near 9 fm. This maximum is at the same location for Va, Va1,

and Va2 because phase-equivalent potentials have the same asymptotic behavior

and thus the same nodes beyond the potential range. This situation must be

contrasted with the 6He case where the cancellation enhances tiny differences

and where phase-equivalent potentials provide very different results [105].
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Fig. 6.5. Integrals IE(R) [Eq. (6.8)] at (a) E = 0.3 MeV and (b) 1

MeV, for various potentials.

The results for potential Vc which satisfies the same physical conditions as

Va1 are very similar because the scattering wave function has the same number

of nodes and similar locations of these nodes. At 0.3 MeV, the integrals have

opposite signs for Va and Vc beyond 4 fm because the resonance is below 0.3

MeV for Vc while it is above for Va. They have the same sign and similar

magnitudes at 1 MeV.

On the contrary, the results obtained with Vb are very different, even off

resonance, because the scattering wave function has nodes at quite different

locations. In particular its node near 8 fm at 0.3 MeV or 6 fm at 1 MeV leads

to a cancellation similar to that of the 6He case. We shall see in the next section

that this type of result is ruled out by experiment. It is important to realize that

Vb has the same physical bound state as Va1 and Vc near −17.6 MeV. However,
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Vb does not reproduce the resonance (see Fig. 6.2).

6.4. Transition probability per time and en-

ergy units

The transition probability per time and energy units given by Eq. (6.2)

is plotted in Fig. 6.6 as a function of the relative 9Li + d energy E for the

different potentials. For the potentials displaying a resonance, the results are

qualitatively very similar. The shape of the curve does not depend much on

the resonance location. On the contrary, potential Vb provides results with a

much smaller order of magnitude. The same situation is observed with other

potentials that do not possess a resonance. The total transition probabilities

per time unit (integrated from 0 or from some cutoff to Q) corresponding to

the various potentials are compared with the experimental value in Table 6.1.

This value is calculated from the experimental branching ratio R by

Wexp = R ln 2/t1/2 ≈ 81.5R s−1, (6.12)

where t1/2 is the 11Li ground-state half life 8.5 ms. The experimental branching

ratio is (1.5± 0.2)× 10−4 [97]. The results at various cutoff values in Table 6.1

will be useful for comparison with the new experiment.

All potentials except Vb provide the right order of magnitude but overesti-

mate the experimental value of Ref. [97] by a factor larger than 3. Results of

successive phase-equivalent potentials differ by about 10 %. The main differ-

ence between Va and Vc arises in the cutoff dependence which is sensitive to the

resonance location.

Table 6.1 also indicates the role of a larger two-neutron separation energy

S2n. This introduces a modification of the Q value and of the 11Li wave function.

Except for Vb, the transition probabilities are slightly reduced, by about 20 %.
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Fig. 6.6. Transition probability per time and energy units dW/dE of

the 11Li β decay into the 9Li + d continuum as a function of the

relative 9Li + d energy E calculated with various 9Li + d potentials.

This effect is rather weak and does not modify the discussion. The Vb varia-

tion emphasizes the high sensitivity to weak modifications when a cancellation

occurs, like in the 6He case.

Let us study the role of the main uncertainties in our theoretical descrip-

tion. The first uncertainty concerns the energy location of the resonance. The

location of the peak in Fig. 6.6 affects the total transition probability. In Ta-

ble 6.2, we study the dependence of the transition probability on the resonance

energy Er. To this end, we slightly vary the depth V0 in potential Va. This

leads to a small violation of our criterion (i), i.e. the energy EBS of the physical

bound state is somewhat modified, but this modification remains acceptable in

view of our other simplifying assumptions. As shown by Table 6.2, W is locally
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Table 6.1.

Total transition probability per second W (in 10−3 s−1) for the β

decay of 11Li into 9Li + d. For each value of the two-neutron

separation energy S2n (in MeV), the rows correspond to various

cutoffs.

S2n cutoff Va Va1 Va2 Vb Vc Vc1 Exp.

0.307 E > 0 38.1 42.1 46.7 0.0718 59.7 54.1 12± 2 [97]

E > 0.3 31.0 34.3 38.2 0.0392 22.0 19.7

E > 0.5 4.7 5.4 6.2 0.0096 2.7 2.3

0.376 E > 0 31.5 34.9 39.0 0.1014 50.8 45.8 12± 2 [97]

E > 0.3 25.7 28.6 32.1 0.0622 19.0 17.0

E > 0.5 4.0 4.6 5.3 0.0185 2.4 2.1

quite sensitive to the resonance energy and a slightly higher location would lead

to smaller values. A higher location of the resonance also reduces the cutoff

dependence.

Another effect, not encountered in the 6He case, arises from the fact that

several channels are open below the 9Li + d channel, the lowest one being the

10Be+n channel. Transfer towards these channels is possible at all energies but

should be rather weak below the Coulomb barrier. Therefore we restrict the

discussion to small values of W0 in Eq. (6.11) (this parameter should probably

depend on energy but we neglect this effect here). One observes in Fig. 6.7

that the role of the resonance is strongly reduced even by a weak absorption.

On the contrary, the results above 1 MeV are not much affected. The energy

dependence of dW/dE becomes weaker when absorption increases.

The total transition probabilities per second W calculated with potential

(6.11) in Eq. (6.7) are displayed in Table 6.3 with α and V0 as in potential Va

for several fixed values of the surface absorption constant W0. One observes
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Table 6.2.

Dependence of the total transition probability per second W (in

10−3 s−1) on the resonance energy Er (in MeV) calculated with a

Gaussian potential with α = 0.14 fm−2 as a function of its depth V0

(in MeV) for various cutoffs. The forbidden state energy EFS and

the physical bound state energy EBS are also displayed.

V0 EFS EBS Er W

E > 0 E > 0.3 E > 0.5

90.8 −53.44 −18.26 0.25 47.5 10.7 2.1

90.1 −52.89 −17.92 0.30 42.1 24.6 3.3

89.5 −52.42 −17.63 0.35 38.1 31.0 4.7

89.0 −52.02 −17.38 0.40 35.2 31.0 6.2

88.5 −51.63 −17.15 0.46 32.5 29.6 8.0

that a much small absorption leads to a strong reduction of the transition

probability. As explained by Fig. 6.7, absorption leads to a weaker dependence

on the cutoff.

6.5. Development of the model in view of new

data

In this section we use the results of the analysis done above, for the expla-

nation of new data [98]. First, in Fig. 6.8 we compare the theoretical energy

dependent transition probability calculated with the potential Eq. (6.11) with

a real part Va, with the new data.

As we see in the Fig. 6.8, the energy dependence of the data is not reproduced
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Fig. 6.7. Transition probability per time and energy units dW/dE of

the 11Li β decay into the 9Li + d continuum as a function of the

relative 9Li + d energy E calculated with various values of the

surface absorption strength W0 (in MeV) in Eq. (6.11).

with the optical potential (6.11) based on the parameters of Va. The absorbtion

with the parameter W = 5 MeV reduces the probability around the resonance,

but does not influence the tail. Thus, according to the results of above analysis,

the only way to explain the new data is to move the resonance location to the

right, which must reduce essentially the transition probability.

Now we take a slighly narrower and deeper potential Vn(R) with α = 0.17

fm−2 and V0 = 100.1 MeV. As shown in Fig. 6.8, potential Va locates a resonance

around 0.3 MeV with a width of about 0.1 MeV, but such a resonance does not

appear in the new data [98]. Potential Vn moves the resonance to a higher

energy, around 0.7 MeV (see Fig. 6.9). This leads to an automatic increase of
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Table 6.3.

Dependence of the total transition probability per second W (in

10−3 s−1) on the surface absorption strength W0 (in MeV), calculated

with potential Va as real part for various cutoffs.

W0 E > 0 E > 0.3 E > 0.5

0 38.1 31.0 4.7

1 16.7 13.0 3.5

2 9.9 7.8 2.7

5 4.4 3.6 1.8

its width.

The transition probability per time and energy units calculated with Eqs. (6.2)-

(6.4) is displayed in Fig. 6.10. The dashed curve corresponds to Vn with W0 = 0.

The broad resonance visible in Fig. 6.9 leads to a slow decrease of dW/dE

around 1 MeV, different from the fast decrease obtained with Va in Fig. 6.8.

A non-zero value of W0 is used to simulate the absorption to the various open

channels. The results (full curve) are now in fair agreement with the two sets of

data points obtained with two different techniques of measurement in Ref. [98],

i.e. detection of decays of the 9Li core (triangles) or detection of the emitted

deuteron (squares).

The total transition probability per second W calculated with Vn is 13.3 for

W0 = 0 and 7.3 for W0 = 5 MeV in units of 10−3 s−1. These values remain

essentially unchanged with the experimental cutoff E > 0.2 MeV. The result

with absorption compares well with the values of Ref. [98], 10.6±1.0 (9Li decays)

and 8.8± 1.9 (deuteron emissions) in the same units.
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Fig. 6.8. Transition probability per time and energy units dW/dE of

the 11Li β decay into the 9Li + d continuum as a function of the

relative 9Li + d energy E calculated with various values of the

surface absorption strength W0 (in MeV) in Eq. (6.11) with the real

part Va.

6.6. Conclusion

In the present Chapter, we studied the β decay process of the 11Li halo

nucleus into the 9Li + d continuum in the framework of a three-body model.

Three-body hyperspherical bound-state wave functions on a Lagrange mesh and

two-body 9Li+ d scattering wave functions have been used. For the calculation

of the β decay transition probabilities per time and energy units, several 9Li+d

potentials were employed.

Some 9Li + d potentials are physically inspired by a microscopic cluster
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Fig. 6.9. Phase shift δ0 with potentials Va (full line) and Vn (dashed

line) with W0 = 0, and real part of phase shift δ0 for Vn with W0 = 5

MeV (dotted line).

picture and involve a forbidden state and a physical bound state simulating

the 1/2− excited state of 11Be. A resonance occurs in the s wave at about the

experimental energy. For potentials of this family, the transition probability

per time unit is weakly sensitive to the potential choice. However a potential

without this resonance fails to reproduce even the order of magnitude of the

transition probability. The high sensitivity of the delayed β decay of 6He due to

a cancellation in the Gamow-Teller matrix element does not occur here. This

is emphasized by using phase-equivalent potentials differing by their number of

bound states: they give very different results for 6He and very similar results

for 11Li.

The theoretical result is strongly sensitive to the location of the resonance.
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Fig. 6.10. Transition probability per time and energy units dW/dE

of the 11Li β decay into the 9Li + d continuum as a function of the

relative 9Li + d energy E calculated with various values of the

surface absorption strength W0 (in MeV) in Eq. (6.11) with the real

part Vn.

It is also sensitive to the 11Li separation energy (about 20 % if S2n is increased

by about 70 keV).

The overestimation of the transition probability can be reduced by modify-

ing the resonance location and by introducing absorption removing flux from

the 9Li + d final channel.

The new experimental data of Ref. [98] was reproduced within a developed

three-body model. The resonance in the s wave phase shifts is present at a

higher energy, around 0.7 MeV and it is very broad.
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VII. A UNIQUE DECAY PROCESS: BETA-DELAYED

EMISSION OF A PROTON AND A NEUTRON BY THE 11Li

HALO NUCLEUS

In this chapter we study the unique decay process:

11Li → 9Li + n + p + e− + ν̃e (7.1)

1 The 11Li nucleus is described in a 9Li+n+n three-body model [67] as in pre-

vious chapters and our studies of the deuteron delayed emission [105,123]. It’s

wave function has been calculated by the Belgian group (D. Baye, P. De-

scouvemont, etc.) The 9Li+n+p final state is in the three-body continuum of

11Be. The calculation of wave functions in this continuum is much more compli-

cated than in the three-body continuum of 6He [91,154] (see chapters 4 and 5).

The construction of three-body scattering states for 9Li+n+n would already

be more difficult than for α+n+n because of the poor knowledge of the 9Li+n

interaction. The study of the 9Li+n+p continuum is worse for several reasons.

(i) The halo nucleons are not identical and the wave functions have about

twice as much components at the same level of truncation in an expansion in

hyperspherical harmonics.

(ii) The presence of a Coulomb interaction between the 9Li core and the

proton requires a more complicated treatment than in the neutral case.

(iii) The structure of the continuum wave functions is more complicated

since one can expect a larger number of bound states to which they must be

orthogonal. For these reasons, the technique that we have developed [91] can

not provide a converged calculation with our present computer capabilities.

Since an evaluation of the branching ratio would be necessary to guide future

1This chapter is based on the results of Ref. [125]
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experiments, we shall simplify the study by describing the continuum with

three-body Coulomb waves. This approximation should be accurate enough to

estimate the order of magnitude of the branching ratio and the shape of the

energy distribution.

In section 7.1., we present general formulas for the decay probability per time

unit for the β delayed np emission. In section 7.2., we evaluate the branching

ratio and discuss its origin. Concluding remarks are presented in section 7.3.

7.1. Decay probability for β delayed np emis-

sion

7.1.1. General expression of decay probability

In this section, we establish the general expression for the β decay prob-

ability distribution for a three-body final state in the continuum. The initial

nucleus with mass number A is described as a three-body bound state of a

core and two nucleons. This state with angular momentum Ji, projection Mi,

and parity πi is expressed in hyperspherical coordinates. The spin, isospin and

parity of the core are neglected. Three-body scattering states are discussed in

Ref. [91] and used in Ref. [179].

Let us follow the notation in Ref. [179] and denote the three particles as 1,

2, and c (for the core). Let k12 be the relative wave vector between particles 1

and 2 and kc(12) be the relative wave vector between the center of mass of those

particles and the core. When the spin of the core c is neglected, the outgoing

scattering states can be denoted as Ψ
(+)
k12kc(12)M1M2

, where M1 and M2 are the

projections of the spins of particles 1 and 2. These states are assumed to be

normalized with respect to δ(k12 − k′12)δ(kc(12) − k′c(12))δM1M ′
1
δM2M ′

2
.

The distribution of decay probability per time unit can be written as
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dW

dk12dkc(12)
=

1

2π3

mec
2

h̄
G2

β

f(Q− E)

2Ji + 1

∑

Mi

∑

M1M2

(
|MF|2 + λ2

∑
µ

|MGTµ|2
)

,(7.2)

where Gβ ≈ 2.996× 10−12 is the dimensionless β decay constant,

λ ≈ −1.268 is the ratio of the axial-vector to vector coupling constants,

and E is the total energy of the nuclear fragments.

The Fermi integral f(Q−E) depends on the kinetic energy Q−E available for

the electron and antineutrino with

Q = (mn −mp −me)c
2 − S2n. (7.3)

The Fermi and Gamow-Teller matrix elements are respectively given by

MF(E) = 〈Ψ(−)
k12kc(12)M1M2

|
2∑

j=1

tj−|ΨJiMiπi〉 (7.4)

and

MGTµ(E) = 2〈Ψ(−)
k12kc(12)M1M2

|
2∑

j=1

tj−sjµ|ΨJiMiπi〉 (7.5)

where tj and sj are the isospin and spin of particle j, and

µ = −1, 0, +1 labels the tensor components of the spin.

If one integrates expression 8.2 over all directions, the distribution of prob-

ability as a function of the total center-of-mass energy E < Q of the three

particles is given by

dW

dE
=

1

2π3

mec
2

h̄
G2

βf(Q− E)

(
dB(F)

dE
+ λ2dB(GT)

dE

)
. (7.6)
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The Fermi and Gamow-Teller strengths appearing in this expression are given

for σ = F or GT by

dB(σ)

dE
=

∫
dk12dkc(12)

2Ji + 1
δ

(
E − h̄2k2

12

2µ12
−

h̄2k2
c(12)

2µc(12)

)∑

Mi

∑

M1M2

∑
µ

|Mσµ|2 (7.7)

where µ12 is the reduced mass of particles 1 and 2, and

µc(12) is the reduced mass of the core c and the system 1+2.

The total transition probability per time unit W is obtained by integrating

Eq. (7.6) from zero to Q. The branching ratio can than be derived as

R = Wt1/2/ ln 2, (7.8)

where t1/2 ≈ 8.75 ms is the half life of 11Li.

7.1.2. Bound-state and scattering three-body wave func-

tions

In hyperspherical coordinates, the three-body wave function of a bound

state is defined as

ΨJMπ(ρ, Ω5ρ) = ρ−5/2
∑

γK

χJπ
γK(ρ) YJM

γK (Ω5ρ), (7.9)

where ρ is the hyperradius,

Ω5ρ represents the five hyperangles, and

YJM
γK (Ω5ρ) is a hyperspherical harmonics (see chapters 4 and Ref. [67]).

The symbol K corresponds to the hypermomentum quantum number and γ is

a shorthand notation for lxlyLS,
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where L is the total orbital momentum,

S is the total spin, and

lx and ly are the orbital momenta for the relative motions corresponding to

the Jacobi coordinates between particles 1 and 2 and between the core and the

center of mass of 1+2, respectively.

The parity of these relative motions is given by π = (−1)lx+ly = (−1)K , which

implies that K must be either even or odd. The hyperradial wave functions are

expanded as

χJπ
γK(ρ) =

N∑
i=1

cJπ
γKifi(ρ) (7.10)

in terms of N Lagrange functions fi (see [67] for definitions). Since the hy-

perspherical harmonics and the Lagrange functions are orthonormal, the wave

functions are normed if

∑

γK

N∑

i=1

(
cJπ
γKi

)2
= 1. (7.11)

In the present approximation of 11Li with a 0+ core, particles 1 and 2 are

neutrons. The effective angular momentum and parity are Jπ = 0+. The

isospin is T = 1 for the halo neutrons. Since they are identical, antisymmetry

imposes (−1)lx = (−1)S.

The final states of the decay are three-body scattering states. It is conve-

nient to replace the projections M1 and M2 by the total spin S of nucleons 1

and 2 and its projection ν. With a zero-spin core, S is the channel spin. The

ingoing scattering states read [179]

Ψ
(−)
k12kc(12)Sν

=
1

(2π)3ρ5/2

(
A

Ac

)3/4 ∑

JMlxωlyωLωKω

(LωS M−ν ν|JM)

× YLωM−ν ∗
lxωlyωKω

(Ω5k)
∑

γK

(−1)KYJM
γK (Ω5ρ)χ

Jπ∗
γK(γωKω)(ρ), (7.12)
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where Ac = A − 2 is the core mass number. This formula differs from [179]

because of a different normalization. The normalization for the hyperradial

partial waves is [91]

χJπ
γK(γωKω)(ρ) →

ρ→∞
iKω+1(

2π

k
)5/2

× [
H−

γK+2(kρ)δγγω
δKKω

− UJπ
γK,γωKω

H+
γK+2(kρ)

]
. (7.13)

where the wave number k is given by
√

2mNE/h̄2,

mN is the nucleon mass,

and UJπ
γK,γωKω

is an element of the infinite-dimensional collision matrix.

The subscript ω refers to the entrance channel. Let us recall here that, in

a three-body scattering state, there is in principle an infinity of degenerate

entrance channels.

For charged systems, one has

H±
γK+2(x) = GK+ 3

2
(ηγK , x)± iFK+ 3

2
(ηγK , x), (7.14)

where GK+3/2 and FK+3/2 are the irregular and regular Coulomb functions,

respectively [146]. The Sommerfeld parameters ηγK are given by

ηγK = ZJπ
γK,γK

mNe2

h̄2k
, (7.15)

where ZJπ
γK,γK is a diagonal element of the effective-charge matrix and depends

thus on the channel. One usually neglects non-diagonal terms of this matrix

[142].

In the neutral case ηγK = 0, Eq. (7.14) reduces to an expression independent
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of γ,

H±
γK+2(x) = ±i

(πx

2

)1/2
[JK+2(x)± iYK+2(x)] , (7.16)

where Jn(x) and Yn(x) are Bessel functions of first and second kind, respectively.

7.1.3. Reduced transition probabilities

For 11Li, with the spin of the core neglected, we assume Ji = Mi = 0.

The final state is a three-body 9Li+n+p scattering state 7.12. Selection rules

restrict this state to its 0+ and 1+ components for the Fermi and Gamow-Teller

transitions, respectively. In the present approximation, the properties of the

final state only depend on the total spin S and isospin T of the two nucleons.

For the nucleons in the 9Li+n+p continuum of 11Be, the isospin is given by

(−1)lx+S+T = −1. For S = 0, lx even corresponds to T = 1 and lx odd to

T = 0. For S = 1, lx even corresponds to T = 0 and lx odd to T = 1. The

number of channels is thus about the double of the number of channels in the

9Li+n+n continuum of 11Li.

The sum over M1 and M2 in Eq. (7.5) can be replaced by a sum over the

channel spin equal to S and its projection ν. If one replaces the wave vectors

k12 and kc(12) by their hyperspherical counterparts k and Ω5k [179], the reduced

transition probabilities can be written as

dB(σ)

dE
= 1

2E
2
(

2mN

h̄2

)3 ∑

Sνµ

∫
dΩ5k|Mσµ|2, (7.17)

where µ = 0 for F and µ = −1, 0, 1 for GT.

After integration over Ω5ρ, the matrix elements can be written as
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Mσµ =

√
2

(2π)3

∑

lxω lyωLωKω

(LωS µ−ν ν|Jµ)YLωµ−ν∗
lxω lyωKω

(Ω5k)I
Jπ
lxω lyωLωSKω

(σ), (7.18)

where the spherical harmonics depend on the hyperangles characterizing the

wave vectors, i.e. they depend on the directions of emission of the core and

nucleons, and on the repartition of the total energy E between these parti-

cles [179].

The expressions IJπ
lxω lyωLωSKω

(σ) are one-dimensional integrals over the hyperra-

dius ρ. After integration over Ω5k and summation over the projections µ and

ν, the reduced transition probabilities simplify as

dB(σ)

dE
=

2J + 1

(2π)6 E2
(

2mN

h̄2

)3 ∑

lxω lyωLωSKω

∣∣∣IJπ
lxω lyωLωSKω

(σ)
∣∣∣
2
. (7.19)

Let us list the possible cases. For the Fermi operator, the scattering-state par-

tial wave has J = 0 and π = +1. One obtains for S = 0,

I0+

lxω lyω00Kω
(F) =

∑

lx even

∑

K

∫ ∞

0
χ0+

lxlx00K(lxω lyω00Kω)(ρ)χ0+

lxlx00K(ρ)dρ, (7.20)

and for S = 1,

I0+

lxω lyω11Kω
(F) =

∑

lx odd

∑

K

∫ ∞

0
χ0+

lxlx11K(lxω lyω11Kω)(ρ)χ0+

lxlx11K(ρ)dρ. (7.21)

For the Gamow-Teller operator, the scattering-state partial wave has J = 1 and

π = +1. One obtains for S = 0,

I1+

lxω lyω10Kω
(GT) =

√
1

3

∑

lx odd

∑

K

∫ ∞

0
χ1+

lxlx10K(lxω lyω10Kω)(ρ)χ0+

lxlx11K(ρ)dρ, (7.22)
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and for S = 1,

I1+

lxω lyωLω1Kω
(GT) = −

∑

lx even

∑

K

∫ ∞

0
χ1+

lxlx01K(lxω lyωLω1Kω)(ρ)χ0+

lxlx00K(ρ)dρ

−
√

2

3

∑

lx odd

∑

K

∫ ∞

0
χ1+

lxlx11K(lxω lyωLω1Kω)(ρ)χ0+

lxlx11K(ρ)dρ. (7.23)

Because of the properties of Lagrange functions, the integrals are simply given

by

∫ ∞

0
χJπ

γK(γωKω)(ρ)χ0+

γK(ρ)dρ ≈
∑

i

(hλi)
1/2c0+

γKiχ
Jπ
γK(γωKω)(hxi), (7.24)

where xi and λi are the zeros and weights of the Gauss quadrature associated

with the Lagrange functions and h is a scaling factor providing mesh points

ρi = hxi adapted to the extension of the physical system.

7.1.4. Coulomb-wave approximation

As mentioned in the introduction, we shall use a simpler approximation

based on three-body Coulomb functions. In the pure Coulomb case, the scat-

tering partial waves are approximated as

χJπ
γK(γωKω)(ρ) = 2iK(2π/k)5/2FK+3/2(ηγK , kρ)δγγω

δKKω
. (7.25)

With this approximation, the reduced transitions probabilities become
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dB(F)

dE
=

4mN

πkh̄2

∑

lxω

∑

Kω

∣∣∣∣
∫ ∞

0
FKω+3/2(ηγωKω

, kρ)χ0+

γωKω
(ρ)dρ

∣∣∣∣
2

(7.26)

where γω represents here lxω
lxω

SS with (−1)S = (−1)lxω , and

dB(GT)

dE
= 3

dB(F)

dE
. (7.27)

The F and GT reduced transition probabilities are then proportional.

7.2. Results and discussion

7.2.1. Q value and Fermi integral

With the separation energy S2n = 376± 5 keV [112] of 11Li, the Q value for

the β delayed np emission is quite small,

Q ≈ 0.404 MeV. (7.28)

Moreover, the wave number is also small,

k < 0.14 fm−1. (7.29)

This will affect the behavior of wave functions at small distances.

In Fig. 7.1, the Fermi integrals f(Q − E) for the emission of the different

hydrogen isotopes are compared. The emitted electron being much faster than

the heavy particles, the charge Z = 4 is used in the electron attraction by

the final nuclear system. The Q values are 2.63 and 4.82 MeV for 2H and 3H,

respectively. Both processes have been observed experimentally. In spite of
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a much larger Fermi integral, the branching ratio for tritons [120, 180] is not

larger than for deuterons [96, 97]. The emission of deuterons can be fairly well

described in a model where the 9Li+d resonance observed in the model of [105]

is shifted to about 0.8 MeV and an absorption towards other open channels is

included [124]. To our knowledge, no model description of the β delayed triton

emission is available. The difficulty comes from the fact that this decay can not

be described in a three-body model.

0 1 2 3 4 5

E  (MeV)

f(
Q

-E
)

3H

2H
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104

102

1
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10-4

Fig. 7.1. Fermi integral f(Q− E) as a function of the total energy E

of the emitted nuclear fragments for the hydrogen isotopes 1H, 2H,

and 3H.

The Fermi integral for β delayed proton-neutron decay is much smaller than

the other ones because of the limited phase space. The branching ratio can thus

be expected to be much smaller than for the other β delayed emissions.

7.2.2. Bound-state and Coulomb wave functions

The 11Li ground state is obtained as a bound state in a 9Li+n+n model.
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The Minnesota force is used as nucleon-nucleon interaction [152]. The 9Li-

neutron interaction is the P2 interaction of [118], downscaled by a factor 0.97 to

approximate the experimental binding energy. The s and p3/2 forbidden states

are eliminated by supersymmetric transformations [24]. The sum over partial

waves in the wave function Eq. (7.9) is restricted to K ≤ Kmax = 20. This

wave function involves 66 components. The hyperradial functions Eq. (7.10)

are expanded over a Lagrange-Laguerre basis with integrals calculated with the

corresponding Gauss-Laguerre quadrature, as explained in [67]. The calculation

is performed with N = 40 basis functions and mesh points and the mesh is

scaled with a factor h = 0.4 (see [67] for definitions). The resulting energy is

−0.391 MeV, close to the experimental value. We use the experimental Q value

Eq. (7.28) in the calculation of Fermi integrals.

Because of the low values Eq. (7.29) of the wave number k, the hyperra-

dial scattering wave functions should be small at distances where the integrals

Eq. (8.9-7.24) are significant. They become smaller and smaller with increasing

hypermomentum K. For this reason, the sum in Eqs. (8.7) or (7.26) is strongly

dominated by K = 0. The K = 0 component of the ground state thus plays a

crucial role. One should however not expect to use a low value of Kmax because

the convergence of this K = 0 component is slow [67].

For the three-body scattering states, we use approximations based on Coulomb

waves. Let us first evaluate the effective charges entering the Sommerfeld pa-

rameter. Because of the K = 0 dominance in expression Eq. (7.26), we can

restrict ourselves to this value and average the Coulomb potential over the

K = 0 hyperspherical harmonics. The Coulomb potential is simply

VC =
3e2

|rc − r1| , (7.30)

where subscript 1 corresponds here to the proton. Using the hyperradius ρ and
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the hyperangle α [67], the K = 0 average can be written as

Z0+

00,00e
2

ρ
=

√
µc1

〈
Y 00

00

∣∣∣∣
3e2

ρ cos α

∣∣∣∣Y 00
00

〉

=
√

µc1
3e2

ρ

16

π

∫ π/2

0
sin2 α cos αdα, (7.31)

where µc1 = Ac/(Ac + 1) is the reduced mass of the core and the proton and

γ = 0 represents lx = ly = L = S = 0. Hence, the effective charge reads

Z0+

00,00 =
48

π
√

10
≈ 4.83. (7.32)

To simplify a calculation dominated by K = 0, we shall use this effective

value for all partial waves.

7.2.3. Distribution of decay probability per time unit

Various approximations of the distribution of decay probability per time

unit for the β delayed np decay of 11Li are displayed in Fig. 7.2. With the

effective charge Eq. (7.32), one obtains the lower dashed curve giving the total

probability W = 5.1× 10−10 s−1 and thus the branching ratio R = 6.5× 10−12.

These results can be contrasted with a plane-wave calculation (η00 = 0) which

leads to the upper dashed curve giving W = 3.8×10−8 s−1 and R = 4.8×10−10.

The Coulomb-wave calculation is pessimistic because it neglects an enhanced

probability of presence of the emitted nucleons at short distances due to the

attractive nuclear interaction. The plane-wave calculation overestimates the

probability of presence of the emitted proton at short distances because of the

missing Coulomb repulsion by the nucleus. Both calculations neglect a possi-

ble absorption towards other open channels affecting the final wave function.
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However, it is difficult to figure out whether one of these cases is a better ap-

proximation. Hence we turn to a slightly different approach. For a better but

0 0.1 0.2 0.3 0.4

E  (MeV)

dW
/d

E
 (

s-1
)

10-6

10-8

10-10

10-12

Fig. 7.2. Distribution of decay probability per time unit for the β

delayed np decay of 11Li: plane wave (upper dashed curve),

Coulomb wave with effective charge Eq (7.32) (lower dashed curve),

and shifted Coulomb waves with a = 10 (lower full curve) and 15 fm

(upper full curve).

still simple approximation based on Coulomb functions, we have considered the

eigenstates of the 9Li+n+p system. With Kmax = 20, its wave functions involve

121 components. The conditions of the calculation are the same as for 9Li+n+n

except for the additional Coulomb interaction Eq. (7.30) between 9Li and p and

a reduced symmetry. The 9Li+p relative motion only requires the elimination

of an s forbidden state.

We obtain four bound states at −12.027, −3.944, −0.876, and −0.786 MeV

with respect to the 9Li+n+p threshold. Even the lowest bound state is far

above the experimental ground-state energy −20.14 MeV. The state at −0.876

is the isobaric analog of the 11Li ground state. The lowest positive-energy state
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Fig. 7.3. K = 0 components of the lowest positive-energy

pseudostate near 0.4 MeV for Kmax = 12 (dashed line), 16 (dotted

line), and 20 (dash-dotted line) normalized to the K = 0 Coulomb

wave with Z0+

00,00 = 4.83 (right full line); same Coulomb wave shifted

by 15 fm (left full line).

is located at 0.379 MeV. It must not be considered as a resonance but rather as

a pseudostate, a bound-state approximation of a scattering state at this energy.

Its wave function will be useful to construct a better exploratory approximation.

The K = 0 components of the lowest positive-energy state located near

0.4 MeV obtained with Kmax = 12, 16, and 20 are displayed in Fig. 7.3. The

energies do not vary much with Kmax but the wave function is not yet converged.

The amplitudes of the three curves are normalized to the K = 0 Coulomb wave

Eq. (7.25) corresponding to the charge Eq. (7.32) (right full line). One observes

a significant shift between the pseudostate and the Coulomb wave. As a simple

qualitative approximation, we shift the Coulomb wave by 15 fm towards shorter

distances (left full line). The resulting curve simulates the general behavior of

the pseudostate. A shift by 10 fm would also be plausible.

We thus simulate the K = 0 component of the scattering state with the
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shifted Coulomb functions

χJπ
γK(γωKω)(ρ) = 2iK(2π/k)5/2FK+3/2[ηγK , k(ρ + a)]δγγω

δKKω
(7.33)

with a = 10 and 15 fm.

These functions do not vanish at the origin but this drawback has little

influence, i.e. a smaller influence than other approximations. The results are

displayed as full curves in Fig. 7.2: the lower curve corresponds to a = 10

fm and the upper curve corresponds to a = 15 fm. Their maximum is slightly

shifted towards higher energies. The most probable total energies E are located

between 0.15 and 0.3 MeV and the most probable total energies of the proton

and neutron should approximately lie in the same interval since the 9Li core is

heavier. This approximation corresponds to 0.6 × 10−8 < W < 1.8 × 10−8 s−1

and 0.8× 10−10 < R < 2.2× 10−10.

7.3. Conclusion

In this Chapter, we evaluate the order of magnitude of the branching ratio

for the β delayed np emission by 11Li, a very exotic decay process, unique

among nuclei with known two-neutron separation energies. We have established

the theoretical formulas for the Fermi and Gamow-Teller transitions leading to

three-body final states.

An accurate model calculation is made very difficult by the need of three-

body scattering states involving three different particles, two of them charged,

at very low energies and by our lack of knowledge of physical properties of this

three-body continuum and of absorption effects in the final three-body channel.

To circumvent these difficulties in an exploratory calculation, we have made

several simplifying approximations. Simple models of the final state involving

a plane wave and a pure Coulomb wave provide likely upper and lower bounds
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of the branching ratio, respectively. We think that more reasonable estimates

of the branching ratio and of the energy distribution of the decays are obtained

with shifted three-body Coulomb functions.

The obtained branching ratio should be comprised between 6 × 10−12 and

5 × 10−10 with more plausible values between 0.8 × 10−10 and 2.2 × 10−10.

The most probable total energies of the proton and neutron should lie between

0.15 and 0.3 MeV. In any case, the branching ratio is much smaller than for the

deuteron and triton channels, i.e. (1.3±0.13)×10−4 [98] and (0.93±0.08)×10−4

[180], respectively. It is even much smaller than for the hindered deuteron decay

of 6He, (2.6± 1.3)× 10−6 [94]. The main cause of this smallness is the small Q

value of the process which leads to a limited phase space. The observation of

this β delayed decay mode, if it is possible, will thus require high radioactive

beam intensities and long measurement times to reach a significant enough

number of 11Li decays.

If this unique decay process is studied experimentally, a better model calcu-

lation will become necessary, with a full calculation of the three-body 9Li+n+p

continuum wave functions, using the formalism developed in Sec. 7.1. This study

should be performed with 9Li+n and 9Li+p optical potentials in order to take

absorption effects into account.
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VIII. BETA-DELAYED EMISSION OF A PROTON BY A

ONE-NEUTRON HALO NUCLEUS

In this chapter we study the beta-decay process of one-neutron halo nuclei

11B, 19C, and 31Ne in the two-body potential model. 1 As was indicated in

chapter 2, the β decay of the bound halo neutron may occur, under the condition

of energy conservation

Sn < (mn −mp −me)c
2 ≈ 0.782 MeV, (8.1)

where Sn is the neutron separation energy of the decaying nucleus and

mn, mp and me are the neutron, proton and electron masses, respectively. The

initial halo nucleus is treated as a core+neutron bound state. The final states

are described as core+proton continuum. We will estimate transition probabil-

ities and branching ratios for these processes.

8.1. Decay probability for β delayed proton emis-

sion

The β decay of the halo neutron releases the resulting proton from the core.

The distribution of decay probability per time unit as a function of the energy

E < Q of the relative motion of the two particles is given by

dW

dE
=

1

2π3

mec
2

h̄
G2

βf(Q− E)

(
dB(F)

dE
+ λ2dB(GT)

dE

)
, (8.2)

1This chapter is based on the results of Ref. [126]
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where Gβ ≈ 2.996× 10−12 is the dimensionless β decay constant and

λ ≈ −1.268 is the ratio of the axial-vector to vector coupling constants.

The Fermi integral f(Q−E) depends on the kinetic energy Q−E available for

the electron and antineutrino with

Q = (mn −mp −me)c
2 − Sn. (8.3)

The total decay probability per time unit W is obtained by integrating Eq. (8.2)

from zero to Q. The branching ratio can than be derived as

R = Wt1/2/ ln 2, (8.4)

where t1/2 is the half life of the halo nucleus.

In the present model, the halo nucleus is described as a two-body core+

neutron system in its ground state with total angular momentum Ji resulting

from the coupling of the orbital momentum li of the relative motion and the

neutron spin s = 1/2. The spin of the core is assumed to be zero. The parity of

the initial state is (−1)li. The radial wave function is denoted as uiliJi
with the

normalization
∫∞

0 |uiliJi
(r)|2dr = 1. It is obtained from a potential Vi adjusted

to reproduce the experimental neutron separation energy Sn.

The final scattering state of the core and the proton is a distorted wave with

wave vector k. Because of selection rules, only some partial waves with total

angular momentum Jf resulting from the coupling of the orbital momentum lf

and the proton spin s are allowed. The radial wave functions uklfJf
for a wave

number k =
√

2µE/h̄2 where µ is the core-proton reduced mass are obtained

with a potential Vf describing the core+proton system. They are normalized

according to
∫∞

0 uklfJf
(r)uk′lfJf

(r)dr = δ(k − k′). The potential Vf is usually

poorly known when the core is unstable.

Within this model, the Fermi reduced decay probability is given by
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dB(F)

dE
=

1

h̄v
|IliJiJi

|2 (8.5)

and the Gamow-Teller reduced decay probability by

dB(GT)

dE
=

6

h̄v

∑

Jf

(2Jf + 1)





Jf s li

s Ji 1





2
∣∣IliJiJf

∣∣2 (8.6)

with the relative velocity v = h̄k/µ and the radial integrals

IlJiJf
=

∫ ∞

0
uklJf

(r)uilJi
(r)dr. (8.7)

If the final wave function does not depend on Jf , the Gamow-Teller term

simplifies as

dB(GT)

dE
= 3

dB(F)

dE
. (8.8)

The reduced decay probability can then also be written as

dW

dE
= Wn

f(Q− E)

fn

dB(F)

dE
, (8.9)

where Wn is the free-neutron β decay probability per second and fn is the

corresponding Fermi integral.

With respect to a free neutron, the decay probability is affected in two ways.

First, the ratio f(Q−E)/fn is small due to the reduction of phase space, since

fn ≡ f(Q+Sn). It becomes extremely small when E tends to Q. The β delayed

proton emission is favoured by very small separation energies Sn. Second, the

reduced decay probability Eq. (8.5) appearing in Eq. (8.9) is proportional to
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the square of a radial integral Eq. (8.7). Because of the Coulomb repulsion

and the smallness of the Q value, the scattering waves are small and, when E

tends to zero, tend to zero as k1/2 exp(−πη) [181], where η = Zce
2/h̄v is the

Sommerfeld parameter. They become thus smaller with increasing charge Zc of

the core. They also become smaller with increasing orbital momentum. Hence,

at given Q value, we expect the decay probability to be largest for the lightest

halo nuclei and for the halo neutron in the s wave.

8.2. Results and discussion

Before making explicit calculations, we have to specify the choice of poten-

tials. The Fermi strength is proportional to the square of an overlap integral

Eq. (8.7) between the initial and final radial wave functions. In order to have a

realistic overlap, it is useful to have a correct node structure for these wave func-

tions. Indeed, the presence of nodes leads to an integrand that changes sign one

or several times and thus to a reduction of the overlap. Spectroscopic factors

can also affect the size of the Fermi strength but given the limited knowledge

on these quantities, we choose to ignore them in the present exploratory study.

Finally, absorption in the core+proton optical potential might also play a role.

However, the energies of the states after decay are lower than, or comparable

to, the energy of the Coulomb barrier. Absorption should be weak and can

safely be neglected.

Hence, we shall use real potentials Vi and Vf which should be deep enough to

provide a realistic node structure of the initial and final radial wave functions.

To keep the model simple we only use central Woods-Saxon potentials with

range r0A
1/3
c where Ac is the mass number of the core. The depth is adapted

to the separation energy for the core+n system. The same form factor with

an additional point-sphere Coulomb potential is employed for the final core+p
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elastic scattering. Because of the small energies, the phase shifts are small and

the sensitivity to Vf is weak. Now let us consider explicit cases.

The best documented case is 11Be. Its 1/2+ ground state has a separation

energy of about 501 keV [182] and its half life is 13.8 s [183]. The halo neutron

is described by an s wave. The parameters of the Woods-Saxon potential are

taken as r0 = 1.2 fm, a = 0.6 fm and Vi0 = 62.52 MeV [184]. In the s wave, this

potential possesses one unphysical forbidden state. The same parameters are

used for the final potential except Vf0. The 11B nucleus has a proton separation

energy Sp ≈ 11.228 MeV [111]. Its lowest 1/2+ state is located at the excitation

energy Ex ≈ 6.79 MeV. In the s wave, Vf0 = 84.1 MeV is adjusted so that

the potential possesses one forbidden state and one bound state fitted to the

energy Ex − Sp ≈ −4.52 MeV with respect to the 10Be+p threshold. Bound

and scattering states should thus have a reasonable node structure.
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1.E-10
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E
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Fig. 8.1. Distribution of decay probability per second for the β

delayed np decay of 11Be, 19C and 31Ne.

The Q value Eq. (8.3) is small, 0.281 MeV. The distribution of decay proba-

bility is displayed in Fig. 8.1. The most probable energies of the relative motion
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are in the interval 0.1-0.2 MeV. The total decay probability 1.5×10−9 s−1 leads

to a branching ratio 3.0 × 10−8. Recent experiments [185, 186] have confirmed

the possibility of this decay. However, the experimental branching ratio was

unexpectedly high: (8.4± 0.6)× 10−6. As was explained in Ref. [185, 186] this

is possible if the decay proceeds through a new single-particle resonance in 11B.

The 19C 1/2+ ground state has a separation energy of 580±90 keV [111] and

a half life t1/2 = 46.2 ms [183]. As a simple picture, we consider a neutron in the

s wave with one forbidden state and no spectroscopic factor. The parameters of

the Woods-Saxon potential are r0 = 1.25 fm, a = 0.62 fm and Vi0 = 41.42 MeV

giving a Q value of 202 keV. For the final 18C+p system, the s wave possesses

one forbidden state. We assume a possible 1/2+ bound state near Ex = 2.1

MeV [187]. With Sp ≈ 16.35 MeV [111], we take Vf0 = 77.2 MeV which gives a

bound state at −14.2 MeV. The distribution of decay probability is displayed

in Fig. 8.1. It is much smaller than for 11Be because of the larger charge of the

core and the smaller Q value. The total decay probability 2.7× 10−12 s−1 leads

to a branching ratio 1.8× 10−13.

A candidate for delayed proton emission is 31Ne. Its neutron separation

energy is poorly known: 0.33 ± 1.07 MeV [111]. Its half life is t1/2 = 3.4

ms [183]. This nucleus belongs to an island of inversion where its ground state

should be an intruder state. Its one-neutron removal cross section [188] is too

large for agreeing with the quantum numbers 0f7/2 of the naive shell model.

The ground state could be described with a 1p3/2 orbital [189] although a 2s1/2

orbital has also been considered [190]. Here we assume a p wave ground state

at −0.33 MeV giving Q = 0.45 MeV. It can be reproduced with the parameters

r0 = 1.25 fm, a = 0.75 fm and Vi0 = 48.86 MeV [189]. This potential has one

forbidden state in the p wave. Little is known about the 30Ne+p scattering.

One can also expect an intruder 3/2− state in the vicinity of the ground state.

Hence we choose Vf0 = 90.0 MeV which provides a forbidden state and a bound

state at −16.1 MeV, not far above −Sp ≈ −17.7 MeV.
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Fig. 8.2. Decay probability per second for the β delayed np decay of

31Ne as a function of the separation energy Sn.

The distribution of decay probability is displayed in Fig. 8.1. It is smaller

than for 11Be because of the larger charge of the core and the higher orbital

momentum, but these effects are partly compensated by the larger Q value.

The most probable energies E lie between 0.25 and 0.35 MeV. The total decay

probability 3.3 × 10−10 s−1 leads to a branching ratio 1.6 × 10−12. For an s

ground state with two forbidden states (Vi0 = 69.27 MeV), the decay probability

W ≈ 1.6× 10−9 would be five times larger.

The separation energy of 31Ne is quite uncertain. The one-neutron removal

cross section can be interpreted as arising from Sn ≈ 0.6 MeV but this assump-

tion is weakened by the lack of knowledge of spectroscopic factors [189]. Hence

we display in Fig. 8.2 the dependence of the decay probability on the separa-

tion energy Sn. One observes that it varies very strongly. If Sn is around 0.6

MeV, the decay probability is reduced by about six orders of magnitude. On

the contrary, the decay probability can be larger by five orders of magnitude if

the separation energy is very small.

Finally, let us note that an estimate of the order of magnitude (in general
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within a factor of two) can be obtained with the simple approximation

IlJiJf
= C

√
2

π

∫ ∞

a

Fl(η, kr)e−κrdr (8.10)

where a = 5 fm,

Fl is a regular Coulomb function,

κ =
√

2µSn/h̄
2. Under the same conditions as in Fig. 8.1, the asymptotic nor-

malization constant C is 0.83, 0.96, 0.69 fm−1/2 for 11Be, 19C, 31Ne, respectively.

8.3. Conclusion

As a summary, we have evaluated the order of magnitude of the decay

probability per second for the β delayed proton emission by one-neutron halo

nuclei. The best candidate for observing such a decay is 11Be in spite of its not

very small separation energy. Because of a longer lifetime, the branching ratio

is larger by two orders of magnitude than for the n − p delayed decay of 11Li

[125]. The observation of this β delayed decay mode of 11Be thus requires high

radioactive beam intensities and long measurement times. Resent experiments

have confirmed these predictions. However, the measured branching ratio was

by two order of magnitude higher than expected. This can be understood if the

decay proceeds through a new single-particle resonance in 11B.

The neutron separation energies of the other candidates, 19C and 31Ne, are

less well known and the decay probabilities are thus more uncertain. We have

shown that the decay probability varies strongly with the neutron separation

energy. A very small Sn would be advantageous for the study of this decay

mode. This advantage however decreases when the charge of the core increases.
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CONCLUSIONS

In the present dissertation, effective potential models have been applied to

study the bound and continuum structure of light Borromean nuclei, including

exotic halo systems, and the beta- and M1-transition processes of the halo nuclei

into two-body and three-body continuum channels.

The obtained results have confirmed that the nuclear potential models are

able to reproduce experimental data with a good accuracy if they describe the

underlying microscopic features, and if the parameters of the potential are cho-

sen in a consistent way. The most important cluster-cluster potential models

have been examined: potentials with a strong repulsive core at short distances

and, alternatively, deep potential models containing Pauli-forbidden states in

the lower partial waves and yielding a node at short distances in the scattering

wave function, a property of the microscopic cluster models. Thus, by com-

paring the results of the application of wave functions, obtained with different

potential models, we have examined the importance of the microscopic de-

scription of the electromagnetic and weak processes with light nuclei, including

exotic halo nuclei.

Conclusions of the dissertation work:

1) An extremely high sensitivity of the energies of the compact 0+
1 and 2+

1

states of the 12C nucleus to the description of the two body αα Pauli forbidden

states was established.

2) For the first time the R-matrix approach has been developed for the study

of the three-body continuum structure of light nuclei in the frame of the hyper-

spherical harmonics method on a Lagrange-mesh basis in combination with the

propagation technique. It is found that the R-matrix, calculated at the bound-

ary of the internal region, must be propagated up to large distances (about 1000



150

fm), where the wave function is matched with its asymptotics. The method has

been applied to the analysis of the three-body continuum structure of the two-

neutron halo nuclei 6He and 14Be, diagonal and eigen phases of the three-body

collision matrix have been calculated and a new 14Be(2+) resonance was pre-

dicted at Ex=3.4 MeV. Recent experimental studies with the data Ex(exp) =

3.54(16) MeV have confirmed our prediction.

3) We have shown that for the reproduction of the experimental data on the

delayed beta decay of the 6He halo nucleus into the α+d continuum channel, it is

necessary to use microscopically founded α−d potentials with a forbidden state

in the S-wave, reproducing phase shifts and the ground state energy. In that

case, the internal and halo components of the Gamow-Teller matrix elements

almost completely cancel each other, and as a result, the transition probability is

strongly reduced consistently with the experimental data. These results for the

first time demonstrated the importance of the potential models with forbidden

states, which have a microscopic background, in beta-decay processes.

4) The method of hyperspherical harmonics on a Lagrange mesh has been

applied to the analysis of the magnetic M1-transition of the isobar-analog state

6Li(0+) to the 6Li(1+) ground state and to the α + d continuum channel in

the three-body formalism. The theoretical estimation for the width of the

transition to the ground state 7.49 eV is well consistent with the experimental

data 8.19±0.19 eV. And the calculated magnetic moment of the 6Li nucleus

(µ = 0.86µN) reproduced the experimental data 0.82µN fairly well. Theoretical

estimations for the probabilities of the M1-transition per time and energy units

of the isobar-analog state 6Li(0+) to the α + d continuum have been obtained.

The integral width of the transition 0.9 meV is well consistent with the previous

simplified calculations. It was shown that the isobar-analog state 6Li(0+) has

a well developed halo structure, like the nucleus 6He(0+).

5) The theoretical estimations for the transition probabilities per time and

energy units of the beta-decay of the halo nucleus 11Li to the two-body 9Li + d
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continuum channel have been obtained, very consistent with new experimental

data. In this case, a resonance in the S-wave of the 9Li + d system at the

energy position of about 0.7 MeV plays the main role, not depending on which

potential model is used: with a repulsive core or with a forbidden state. In this

case, the halo components strongly dominate over the internal components. For

the integral probability of the process the theoretical estimation 7.3E-3 s−1 is

within the error bar of the experimental data 8.8 ±1.9 E-3 s−1 for the energy

cut-off E > 0.2 MeV.

6) The branching ratio for the β delayed np emission by 11Li, a very exotic

decay process, unique among nuclei with known two-neutron separation ener-

gies, has been estimated in the frame of the cluster potential model. Reasonable

estimates of the branching ratio and of the energy distribution of the decays are

obtained with shifted three-body Coulomb functions. The obtained branching

ratio is estimated between 0.8 × 10−10 and 2.2 × 10−10, which is much smaller

than for the hindered deuteron decay of 6He, (2.6± 1.3)× 10−6. The reason of

this smallness is the small Q value of the process which leads to a limited phase

space. The observation of this β delayed decay mode, as expected, requires a

valuable experimental effort. The total transition probabilities are estimated

to be of order 10−8 s−1. These estimations show how rare the process is.

7) At the end, we have evaluated the beta decay probabilities per time and

energy units of the one-neutron halo nuclei 11Be, 19C and 31Ne to the two-

body core + p continuum channels in the cluster potential model. For the total

transition probability of the 11Be nucleus to the 10Be + p continuum channel

the estimation is 1.5E-9 s−1, of the 19C nucleus to the 18C + p continuum it is

2.7 E-12 s−1. The corresponding branching ratios are 3.0E-8 for the 11Be and

1.8E-13 for the 19C halo nuclei. The total transition probability of the 31Ne

nucleus to the 30Ne + p continuum channel varies from 0 up to 1.E-6 s−1 due

to uncertainty of the separation energy. For the separation energy between

0.25 and 0.35 MeV, the total decay probability is 3.3E-10 s−1, which leads to a
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branching ratio 1.6E-12.

The main conclusion of the dissertation is that the potential models de-

veloped in this work can not only describe adequately the existing experimental

data in the field of low-energy nuclear physics, but also are able to predict new

properties of light nuclei, if the parameters of the model are chosen from the

condition to be consistent with the underlying microscopic features.
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APPENDIX

1. Gamma-delayed transition probabilities to

continuum states

Let us assume a bound initial state at energy Ei with spin and parity Ji, πi

of a nucleus at rest, decaying to a final unbound state at relative energy E, and

with spin and parity Jf , πf . In the final state, both nuclei are characterized

by spins I1 and I2, and by internal wave functions φI1 and φI2. According to

Ref. [191], the transition probability per time unit is given by

dWγ =
2π

h̄

|Tfi|2
(2πh̄)6dp dP dpγ δ(P + pγ)δ(E + Eγ − Ei), (A.1.1)

where we neglect recoil effects. In (A.1.1), (p, P , pγ) are the relative, total, and

photon momenta. The transition matrix element Tfi is obtained from

|Tfi|2 =
1

2Ji + 1

2πh̄c

kγ

∑

ν1,ν2,Mi,q

|〈Ψν1ν2(−)
f (p)|Hq

γ |ΨJiMiπi〉|2, (A.1.2)

where kγ is the photon wave number,

(ν1, ν2) are the spin orientations in the exit channel,

Hq
γ is the electromagnetic-emission hamiltonian with polarization q. The fi-

nal state is described by an ingoing wave Ψ
ν1ν2(−)
f with relative momentum

p = (p, Ωp), related to the corresponding outgoing wave Ψ
ν1ν2(+)
f by
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Ψ
ν1ν2(−)
f (p) = (−1)I1+I2−ν1−ν2KΨ

−ν1−ν2(+)
f (−p), (A.1.3)

where K is the time-reversal operator. The outgoing wave function is written

in a partial wave expansion as

Ψ
ν1ν2(+)
f (p) =

∑

JMπ`Iν

〈I1I2ν1ν2|Iν〉〈`Imν|JM〉ΨJMπ
`I (E)D`∗

0m(Ωp), (A.1.4)

where D`
0m(Ωp) are Wigner functions. When the relative coordinate r is large,

the asymptotic behaviour of the partial wave is given by

ΨJMπ
`I (E) −→ [π(2`+1)]1/2

kr i`+1 exp(iσ`)
(
I`(kr)− UJπO`(kr)

)

×[
[φI1 ⊗ φI2]I ⊗ Y`(Ωr)

]JM
, (A.1.5)

where σ` are the Coulomb phase shifts,

I` and O` are the ingoing and outgoing Coulomb functions, respectively. Here

and in the following, we assume a single-channel problem or, in other words,

that the dimension of the collision matrix U is unity.

After integration over P and pγ, Eq. (A.1.1) is transformed as

dWγ =
k2

γ

(2πh̄)5c
|Tfi|2 dp dΩγ. (A.1.6)

First, we expand Hq
γ in electric (σ = E) and magnetic (σ = M) multipoles [192].

Then we integrate over the orientations Ωp and Ωγ. We have

∫
|Tfi|2dΩpdΩγ =

32π2

2Ji + 1

∑

σλJfπf

|ασ
λ|2

2λ + 1
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×2Jf + 1

2`f + 1
|〈ΨJfπf

`fIf
(E)||Mσ

λ||ΨJiπi〉|2, (A.1.7)

where Mσ
λ are the multipole operators of order λ (coefficients ασ

λ are given, for

instance, in Ref. [192]). Let use define

Γγ(E) =
∑

σλJfπf

8πk2λ+1
γ

λ(2λ + 1)!!2
2Jf + 1

2Ji + 1
|〈ΨJfπf

`fIf
(E)||Mσ

λ||ΨJiπi〉|2. (A.1.8)

Using (A.1.7) in (A.1.6) gives

dWγ

dE
=

µk

2π2h̄3
Γγ(E)

2`f + 1
, (A.1.9)

where µ is the reduced mass. An interesting case concerns transitions to a

narrow resonance with energy ER and particle width Γ. In such a case, the

scattering wave function can be approximated as [193]

Ψ
Jfπf

If `f
(E) ≈ 1

k

[πh̄v(2`f + 1)Γ]1/2

ER − E − iΓ/2
Ψ

Jfπf

BSA, (A.1.10)

where Ψ
Jfπf

BSA is the bound-state approximation of the wave function, and

v the relative velocity. Using this approximation in (A.1.9) and integrating over

E gives

Wγ = ΓBSA
γ /h̄, (A.1.11)

where ΓBSA
γ is the γ width in the bound-state approximation. This result

corresponds to the usual definition of the transition probability between two

bound states.
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2. Matrix elements of the M1 transition oper-

ator in hyperspherical coordinates

Let us write the three-body wave function (4.8) as

ΨJMπ
6Li (ρ, Ω5) = ρ−5/2

∑

γK

χJπ
γK(ρ)YJM

γK (Ω5) =
∑

γK

ΨJMπ
γK (ρ, Ω5), (A.2.1)

where index γ stands for (`x`yLS).

A reduced matrix element of `x is obtained from

〈ΨJπ
γK ||`x||ΨJ ′π′

γ′K ′〉 = δ`x`′xδ`y`′yδSS′δKK ′[`x(`x + 1)]1/2 ˆ̀
xL̂L̂′Ĵ ′(−)`x+`y+S+L+L′+J ′

×




L `x `y

lx L′ 1









L J S

J ′ L′ 1



 Iρ, (A.2.2)

where we use the notation ˆ̀=
√

2` + 1, and where the integral Iρ is defined as

Iρ =

∫
χJπ

γK(ρ)χJ ′π′
γ′K ′(ρ)dρ. (A.2.3)

Matrix elements of `y are obtained by swapping `x and `y. For the crossed term

in (5.12), the calculation is more tedious. We have

〈ΨJπ
γK ||x× py + y × px||ΨJ ′π′

γ′K ′〉 = δSS′(−)L+S+J ′+`x+`y
√

6ˆ̀
x
ˆ̀
y
ˆ̀′
x
ˆ̀′
yL̂L̂′Ĵ ′IρIα

×

 `′x 1 `x

0 0 0





 `′y 1 `y

0 0 0








L J S

J ′ L′ 1









`x `y L

`′x `′y L′

1 1 1





, (A.2.4)

where the angular integral reads

Iα =

∫ π/2

0
dα cos2 α sin2 αφ

`x`y

K (α)

(
d

dα
+

∆ly
tan α

− ∆lx
cot α

)
φ

`′x`′y
K ′ (α). (A.2.5)
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In this expression, ∆` = 1 + [`′(`′ + 1) − `(` + 1)]/2. Integration over α is

performed numerically. For the hyperradius ρ, the use of Lagrange functions

makes the integral very simple.

For the spin part of the M1 operator, we have

〈ΨJπ
γK ||s1||ΨJ ′π′

γ′K ′〉 = δ`x`′xδ`y`′yδLL′δKK ′ ŝ1ŜŜ ′Ĵ ′[s1(s1 + 1)]1/2(−)s1+s2+L−J

×




J S L

S ′ J ′ 1









S s1 s2

s1 S ′ 1



 Iρ, (A.2.6)

where we have assumed that the core spin is zero (s3 = 0).

For transitions to the continuum, the previous formula can still be applied,

but the final-state wave functions are now defined by Eq. (5.4). It is clear that

with the restriction to the S-wave final state, the orbital components `x,µ and

`y,µ do not contribute to the M1 transition. The matrix element of the crossed

term is performed over the Jacobi coordinates. Using the S-wave character of

the scattering state, we have

〈Ψ0+

6Li||x× py + y × px||Ψ1+

αd〉 =
√

2µpnµαd/9
∑

K

∫
dxdyφ11

K (α)χ0+

1111K(ρ)

×xyρ−5/2
(

x
∂

∂y
− y

∂

∂x

)
ud(x/

√
µpn)uE(y/

√
µαd), (A.2.7)

where ρ and α are given in Eq. (5.2). The spin contribution is obtained with

the same technique, with the help of Eq. (A.2.6). Note that the bra and ket

have been swapped with respect to Eq. (5.10). The ordering is simply restored

with a factor −1/
√

3.


	1page_English.pdf
	amain.pdf

